Seja a fórmula de Herão $A = \sqrt{p(p - a)(p - b)(p - c)}$ para o cálculo da área; seja, sem perda de generalidade o lado de medida $a$ que varia a uma velocidade $v$, ou seja, $a = vt + a_0$.
$p = \dfrac{vt + a_0 + b + c}{2}$
${\tiny \dfrac{dA}{dt} = \dfrac{[v(-vt - a_0 + b + c) - v(vt + a_0 + b + c)](vt + a_0 - b + c)(vt + a_0 + b - c) + (vt + a_0 + b + c)(- vt - a_0 + b + c)[v(vt + a_0 - b + c) + v(vt + a_0 + b - c)]}{8\sqrt{(vt + a_0 + b + c)(-vt - a_0 + b + c)(vt + a_0 - b + c)(vt + a_0 + b - c)}}}$,
com $b + c > vt + a_0$ e $vt + a_0 > |b - c|$.
Nenhum comentário:
Postar um comentário