$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 07-07-2023.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.
Mostrando postagens com marcador integrais. Mostrar todas as postagens
Mostrando postagens com marcador integrais. Mostrar todas as postagens

sábado, 10 de dezembro de 2022

$\displaystyle\int (\tan^7 x)(\sec^5 x)\ dx$.

$\tan^2 x = \sec^2 x - 1$


$I\ =\ \displaystyle\int (\tan^7 x)(\sec^5 x)\ dx = \displaystyle\int (\tan x)(\sec x)(\sec^2 x - 1)^3(\sec^4 x)\ dx$


Seja $u = \sec x$, $du = (\tan x)(\sec x) dx$.


$I\ =\ \displaystyle\int (u^2 - 1)^3 \cdot u^4\ du\ =\ \dfrac{u^{11}}{11} - \dfrac{u^9}{3} + \dfrac{3u^7}{7} - \dfrac{u^5}{5} + c$


$\fbox{$\displaystyle\int (\tan^7 x)(\sec^5 x)\ dx\ =\ \dfrac{\sec^{11} x}{11} - \dfrac{\sec^9 x}{3} + \dfrac{3\sec^7 x}{7} - \dfrac{\sec^5 x}{5} + c$}$

sábado, 22 de outubro de 2022

Notações. Limites superior e inferior de uma integral.

Seja $f$ uma função descontínua em um conjunto finito de pontos. Sejam $a$ e $b$ elementos de seu domínio.

$\intsup_a^S f(x)\ dx\ \avigual\ b\ \Leftrightarrow\ S = \displaystyle\int_a^b f(x)\ dx$

$\intinf_S^b f(x)\ dx\ \avigual\ a\ \Leftrightarrow\ S = \displaystyle\int_a^b f(x)\ dx$


Observemos que os limites não são únicos, por exemplo $\intsup_{\pi/2}^0 \sin x\ dx$ pode ser $\dfrac{3\pi}{2}$ ou $\dfrac{7\pi}{2}$, razão de não ser utilizada a igualdade "$=$", mas a igualdade conjunta de Antonio Vandré $\{=\}$.

quinta-feira, 7 de julho de 2022

Fórmula da integração por partes.

Pela fórmula do produto para derivadas, $(h \cdot g)'(x) = h'(x)g(x) + h(x)g'(x)$.


Seja $f(x) = h'(x)$ e $F$ a primitiva de $f$.


$\displaystyle\int (F \cdot g)'(x)\ dx\ =\ \displaystyle\int f(x)g(x)\ dx\ +\ \displaystyle\int F(x)g'(x)\ dx\ \Rightarrow$

 

$\Rightarrow\ \fbox{$\displaystyle\int f(x)g(x)\ dx\ =\ F(x)g(x) - \displaystyle\int F(x)g'(x)\ dx$}$

domingo, 1 de maio de 2022

$\displaystyle\int \dfrac{dx}{x^5 + 1}$.

Afim de decompor $\dfrac{1}{x^5 + 1}$ em frações parciais, calculemos as raízes quintas de $-1$, que estão graficamente representadas abaixo:


Logo $\dfrac{1}{x^5 + 1} = \dfrac{Ax + B}{x^2 - \left(2\cos \dfrac{\pi}{5}\right)x + 1} + \dfrac{Cx + D}{x^2 - \left(2\cos \dfrac{3\pi}{5}\right)x + 1} + \dfrac{E}{x + 1}$. ${\large (I)}$

Donde, resolvendo o sistema:

${\tiny \begin{cases}B + D + E = 1\\ \left[4 - 4\cos \left(\dfrac{3\pi}{5}\right)\right]A + \left[4 - 4\cos \left(\dfrac{3\pi}{5}\right)\right]B + \left[4 - 4\cos \left(\dfrac{\pi}{5}\right)\right]C + \left[4 - 4\cos \left(\dfrac{\pi}{5}\right)\right]D + \left[4 - 4\cos \left(\dfrac{3\pi}{5}\right)\right]\left[4 - 4\cos \left(\dfrac{\pi}{5}\right)\right]E = 1\\ \left[30 - 24\cos \left(\dfrac{3\pi}{5}\right)\right]A + \left[15 - 12\cos \left(\dfrac{3\pi}{5}\right)\right]B + \left[30 - 24\cos \left(\dfrac{\pi}{5}\right)\right]C + \left[15 - 12\cos \left(\dfrac{\pi}{5}\right)\right]D + \left[5 - 4\cos \left(\dfrac{3\pi}{5}\right)\right]\left[5 - 4\cos \left(\dfrac{\pi}{5}\right)\right]E = 1\\ \left[120 - 72\cos \left(\dfrac{3\pi}{5}\right)\right]A + \left[40 - 24\cos \left(\dfrac{3\pi}{5}\right)\right]B + \left[120 - 72\cos \left(\dfrac{\pi}{5}\right)\right]C + \left[40 - 24\cos \left(\dfrac{\pi}{5}\right)\right]D + \left[10 - 6\cos \left(\dfrac{3\pi}{5}\right)\right]\left[10 - 6\cos \left(\dfrac{\pi}{5}\right)\right]E = 1\\ \left[10 + 8\cos \left(\dfrac{3\pi}{5}\right)\right]A - \left[5 + 4\cos \left(\dfrac{3\pi}{5}\right)\right]B + \left[10 + 8\cos \left(\dfrac{\pi}{5}\right)\right]C - \left[5 + 4\cos \left(\dfrac{\pi}{5}\right)\right]D + \left[5 + 4\cos \left(\dfrac{3\pi}{5}\right)\right]\left[5 + 4\cos \left(\dfrac{\pi}{5}\right)\right]E = 1\end{cases}}$,

obtemos:

${\tiny \begin{cases}A = \dfrac{\left( 24 {\cos^2 { \dfrac{\pi }{5} }}+92 \cos{ \dfrac{\pi }{5} }+200\right) \cos{ \dfrac{3 \pi }{5} }+32 {\cos^2 { \dfrac{\pi }{5} }}+170 \cos{ \dfrac{\pi }{5} }+285}{\left( 288 \cos{ \dfrac{\pi }{5} }+480\right) {\cos^2 { \dfrac{3 \pi }{5} }}+\left( 720-288 {\cos^2 { \dfrac{\pi }{5} }}\right) \cos{ \dfrac{3 \pi }{5} }-480 {\cos^2 { \dfrac{\pi }{5} }}-720 \cos{ \dfrac{\pi }{5} }}\\ B = -\dfrac{\left( 288 {\cos^2 { \dfrac{\pi }{5} }}+420 \cos{ \dfrac{\pi }{5} }-200\right) \cos{ \dfrac{3 \pi }{5} }+480 {\cos^2 { \dfrac{\pi }{5} }}+592 \cos{ \dfrac{\pi }{5} }-285}{\left( 288 \cos{ \dfrac{\pi }{5} }+480\right) {\cos^2 { \dfrac{3 \pi }{5} }}+\left( 720-288 {\cos^2 { \dfrac{\pi }{5} }}\right) \cos{ \dfrac{3 \pi }{5} }-480 {\cos^2 { \dfrac{\pi }{5} }}-720 \cos{ \dfrac{\pi }{5} }}\\ C = -\dfrac{\left( 24 \cos{ \dfrac{\pi }{5} }+32\right) {\cos^2 { \dfrac{3 \pi }{5} }}+\left( 92 \cos{ \dfrac{\pi }{5} }+170\right) \cos{ \dfrac{3 \pi }{5} }+200 \cos{ \dfrac{\pi }{5} }+285}{\left( 288 \cos{ \dfrac{\pi }{5} }+480\right) {\cos^2 { \dfrac{3 \pi }{5} }}+\left( 720-288 {\cos^2 { \dfrac{\pi }{5} }}\right) \cos{ \dfrac{3 \pi }{5} }-480 {\cos^2 { \dfrac{\pi }{5} }}-720 \cos{ \dfrac{\pi }{5} }}\\ D = \dfrac{\left( 288 \cos{ \dfrac{\pi }{5} }+480\right) {\cos^2 { \dfrac{3 \pi }{5} }}+\left( 420 \cos{ \dfrac{\pi }{5} }+592\right) \cos{ \dfrac{3 \pi }{5} }-200 \cos{ \dfrac{\pi }{5} }-285}{\left( 288 \cos{ \dfrac{\pi }{5} }+480\right) {\cos^2 { \dfrac{3 \pi }{5} }}+\left( 720-288 {\cos^2 { \dfrac{\pi }{5} }}\right) \cos{ \dfrac{3 \pi }{5} }-480 {\cos^2 { \dfrac{\pi }{5} }}-720 \cos{ \dfrac{\pi }{5} }}\\ E = -\dfrac{3}{\left( 12 \cos{ \dfrac{\pi }{5} }+20\right) \cos{ \dfrac{3 \pi }{5} }+20 \cos{ \dfrac{\pi }{5} }+30}\end{cases}}$. ${\large (II)}$

De ${\large (I)}$ obtemos:

${\tiny \dfrac{1}{x^5 + 1} = \dfrac{A}{2} \cdot \dfrac{2x - 2\cos \dfrac{\pi}{5}}{x^2 - \left(2\cos \dfrac{\pi}{5}\right)x + 1} + \dfrac{B + A\cos \dfrac{\pi}{5}}{\sin^2 \dfrac{\pi}{5}} \cdot \dfrac{1}{\left(\dfrac{x - \cos \dfrac{\pi}{5}}{\sin \dfrac{\pi}{5}}\right)^2 + 1} + \dfrac{C}{2} \cdot \dfrac{2x - 2\cos \dfrac{3\pi}{5}}{x^2 - \left(2\cos \dfrac{3\pi}{5}\right)x + 1} + \dfrac{D + C\cos \dfrac{3\pi}{5}}{\sin^2 \dfrac{3\pi}{5}} \cdot \dfrac{1}{\left(\dfrac{x - \cos \dfrac{3\pi}{5}}{\sin \dfrac{3\pi}{5}}\right)^2 + 1} + \dfrac{E}{x + 1}}$. ${\large (III)}$
 
Substituindo ${\large (II)}$ em ${\large (III)}$:

$\fbox{$\begin{array}{l}{\tiny \displaystyle\int \dfrac{dx}{x^5 + 1} \overset{x\ \neq\ \cos \dfrac{\pi}{5}}{=} \dfrac{\left( 24 {\cos^2 { \dfrac{\pi }{5} }}+92 \cos{ \dfrac{\pi }{5} }+200\right) \cos{ \dfrac{3 \pi }{5} }+32 {\cos^2 { \dfrac{\pi }{5} }}+170 \cos{ \dfrac{\pi }{5} }+285}{2 \left[ \left( 288 \cos{ \dfrac{\pi }{5} }+480\right) {\cos^2 { \dfrac{3 \pi }{5} }}+\left( 720-288 {\cos^2 { \dfrac{\pi }{5} }}\right) \cos{ \dfrac{3 \pi }{5} }-480 {\cos^2 { \dfrac{\pi }{5} }}-720 \cos{ \dfrac{\pi }{5} }\right] } \log \left|x^2 - \left(2\cos \dfrac{\pi}{5}\right)x + 1\right| +}\\ \\ {\tiny \dfrac{\dfrac{\cos{ \dfrac{\pi }{5} } \left[ \left( 24 {\cos^2 { \dfrac{\pi }{5} }}+92 \cos{ \dfrac{\pi }{5} }+200\right) \cos{ \dfrac{3 \pi }{5} }+32 {\cos^2 { \dfrac{\pi }{5} }}+170 \cos{ \dfrac{\pi }{5} }+285\right] }{\left( 288 \cos{ \dfrac{\pi }{5} }+480\right) {\cos^2 { \dfrac{3 \pi }{5} }}+\left( 720-288 {\cos^2 { \dfrac{\pi }{5} }}\right) \cos{ \dfrac{3 \pi }{5} }-480 {\cos^2 { \dfrac{\pi }{5} }}-720 \cos{ \dfrac{\pi }{5} }} - \dfrac{\left( 288 {\cos^2 { \dfrac{\pi }{5} }}+420 \cos{ \dfrac{\pi }{5} }-200\right) \cos{ \dfrac{3 \pi }{5} }+480 {\cos^2 { \dfrac{\pi }{5} }}+592 \cos{ \dfrac{\pi }{5} }-285}{\left( 288 \cos{ \dfrac{\pi }{5} }+480\right) {\cos^2 { \dfrac{3 \pi }{5} }}+\left( 720-288 {\cos^2 { \dfrac{\pi }{5} }}\right) \cos{ \dfrac{3 \pi }{5} }-480 {\cos^2 { \dfrac{\pi }{5} }}-720 \cos{ \dfrac{\pi }{5} }}}{\left(\sin \dfrac{\pi}{5}\right) ⋅ \arctan^{-1} \dfrac{x - \cos \dfrac{\pi}{5}}{\sin \dfrac{\pi}{5}}} -} \\ \\ {\tiny -\dfrac{\left( 24 \cos{ \dfrac{\pi }{5} }+32\right) {\cos^2 { \dfrac{3 \pi }{5} }}+\left( 92 \cos{ \dfrac{\pi }{5} }+170\right) \cos{ \dfrac{3 \pi }{5} }+200 \cos{ \dfrac{\pi }{5} }+285}{2 \left[ \left( 288 \cos{ \dfrac{\pi }{5} }+480\right) {\cos^2 { \dfrac{3 \pi }{5} }}+\left( 720-288 {\cos^2 { \dfrac{\pi }{5} }}\right] \cos{ \dfrac{3 \pi }{5} }-480 {\cos^2 { \dfrac{\pi }{5} }}-720 \cos{ \dfrac{\pi }{5} }\right) } \log \left|x^2 - \left(2\cos \dfrac{3\pi}{2}\right)x + 1\right| +}\\ \\ {\tiny +\dfrac{\dfrac{\left( 288 \cos{ \dfrac{\pi }{5} }+480\right) {\cos^2 { \dfrac{3 \pi }{5} }}+\left( 420 \cos{ \dfrac{\pi }{5} }+592\right) \cos{ \dfrac{3 \pi }{5} }-200 \cos{ \dfrac{\pi }{5} }-285}{\left( 288 \cos{ \dfrac{\pi }{5} }+480\right) {\cos^2 { \dfrac{3 \pi }{5} }}+\left( 720-288 {\cos^2 { \dfrac{\pi }{5} }}\right) \cos{ \dfrac{3 \pi }{5} }-480 {\cos^2 { \dfrac{\pi }{5} }}-720 \cos{ \dfrac{\pi }{5} - \dfrac{\cos{ \dfrac{3 \pi }{5} } \left( \left( 24 \cos{ \dfrac{\pi }{5} }+32\right) {\cos^2 { \dfrac{3 \pi }{5} }}+\left( 92 \cos{ \dfrac{\pi }{5} }+170\right) \cos{ \dfrac{3 \pi }{5} }+200 \cos{ \dfrac{\pi }{5} }+285\right) }{\left( 288 \cos{ \dfrac{\pi }{5} }+480\right) {\cos^2 { \dfrac{3 \pi }{5} }}+\left( 720-288 {\cos^2 { \dfrac{\pi }{5} }}\right) \cos{ \dfrac{3 \pi }{5} }-480 {\cos^2 { \dfrac{\pi }{5} }}-720 \cos{ \dfrac{\pi }{5} }}}}}{\left(\sin \dfrac{3\pi}{5}\right) ⋅ \arctan^{-1} \dfrac{x - \cos \dfrac{3\pi}{5}}{\sin \dfrac{3\pi}{5}}} -}\\ \\ {\tiny -\dfrac{3 \log \left|x + 1\right|}{\left( 12 \cos{ \dfrac{\pi }{5} }+20\right) \cos{ \dfrac{3 \pi }{5} }+20 \cos{ \dfrac{\pi }{5} }+30} + c}\\ \\ {\tiny c\ \in\ \mathbb{R}}\end{array}$}$.

segunda-feira, 18 de abril de 2022

Calcular $I\ =\ \displaystyle\int_0^1 \sqrt{x + 3}\ dx$.

Seja $u = x + 3$, $du = dx$.

 

$I\ =\ \displaystyle\int_3^4 \sqrt{u}\ du\ =\ \left.\dfrac{2\sqrt{u^3}}{3}\right|_3^4 = \fbox{$\dfrac{16}{3} - 2\sqrt{3}$}$

sábado, 9 de abril de 2022

Considerações sobre o comprimento da senoide.

O comprimento da senoide é dado por $S = 4\displaystyle\int_0^{\pi / 2} \sqrt{1 + \cos^2 x}\ dx$.


Notemos que $0 \le \cos^2 x \le 1$, logo $4\displaystyle\int_0^{\pi / 2} \sqrt{1}\ dx\ \le\ S\ \le\ 4\displaystyle\int_0^{\pi / 2} \sqrt{1 + 1}\ dx\ \Rightarrow$

 

$\Rightarrow\ \fbox{$2\pi \le S \le 2\sqrt{2}\pi$}$.

quinta-feira, 7 de abril de 2022

Mostre que $\displaystyle\int_1^{+\infty} \dfrac{x}{x^4 + 1}\ dx$ é convergente.

$x^4 < x^4 + 1\ \Rightarrow\ \dfrac{1}{x^4 + 1} < \dfrac{1}{x^4}\ \overset{x \ge 1}{\Rightarrow}\ 0 < \dfrac{x}{x^4 + 1} < \dfrac{1}{x^3}$


Como $\displaystyle\int_1^{+\infty} \dfrac{dx}{x^3}$ converge, pelo critério da comparação, $\displaystyle\int_1^{+\infty} \dfrac{x}{x^4 + 1}\ dx$ é convergente.

 

Quod Erat Demonstrandum.

domingo, 27 de março de 2022

Calcular $I\ =\ \displaystyle\int \sec(x)\csc(x)\ dx$.

$I\ =\ \displaystyle\int \dfrac{2}{\sin(2x)}\ dx$

 

Seja $u = 2x$, $du = 2dx$.

 

$I\ =\ \displaystyle\int \csc(u)\ du\ =\ -\log |\cot(u) + \csc(u)| + c = \fbox{$-\log |\cot(2x) + \csc(2x)| + c$}$

domingo, 20 de março de 2022

sábado, 19 de março de 2022

Calcular $I\ =\ \displaystyle\int_0^\pi \sin^2\left(\dfrac{x}{4}\right) \cos\left(\dfrac{x}{4}\right)\ dx$.

Seja $u = \sin\left(\dfrac{x}{4}\right)$, $du\ =\ \dfrac{\cos\left(\dfrac{x}{4}\right)}{4}\ dx$.

 

$I\ =\ 4\displaystyle\int_0^{\sqrt{2}/2} u^2\ du\ = \fbox{$\dfrac{\sqrt{2}}{3}$}$

Calcular $I\ =\ \displaystyle\int_0^\pi \sin^2 \left(1 + \dfrac{\theta}{2}\right)\ d\theta$.

$I\ =\ \displaystyle\int_0^\pi \cos^2 \left(\dfrac{\pi}{2} - 1 - \dfrac{\theta}{2}\right)\ d\theta\ =\ \displaystyle\int_0^\pi \dfrac{\cos (\pi - 2 - \theta) + 1}{2}\ d\theta$

 

Seja $u = \pi - 2 - \theta$, $du = -d\theta$.

 

$I\ =\ \displaystyle\int_{-2}^{\pi - 2} \dfrac{1 + \cos u}{2}\ du\ =\ \left.\dfrac{u}{2}\right|_{-2}^{\pi - 2} + \left.\dfrac{\sin(u)}{2}\right|_{-2}^{\pi - 2} =$

 

$= \dfrac{\pi - 2}{2} + 1 + \dfrac{\sin(\pi - 2)}{2} + \dfrac{\sin 2}{2} = \fbox{$\dfrac{\pi}{2} + \sin 2$}$

quinta-feira, 17 de março de 2022

quarta-feira, 16 de março de 2022

Calcular a integral definida $I\ =\ \displaystyle\int_0^1 \dfrac{dx}{\sqrt{3x + 1}}$.

Seja $u = 3x + 1$, $du = 3dx$.

 

$I = \dfrac{1}{3}\displaystyle\int_1^4 \dfrac{du}{\sqrt{u}} = \dfrac{1}{3} \cdot \left.2\sqrt{u}\right|_1^4 = \dfrac{4}{3} - \dfrac{2}{3} = \fbox{$\dfrac{2}{3}$}$

Calcular a integral definida $I\ =\ \displaystyle\int_{\pi/6}^{\pi/2} \left(x + \dfrac{2}{\sin^2 x}\right)\ dx$.

$I = \left.\dfrac{x^2}{2}\right|_{\pi/6}^{\pi/2} - 2\left.\cot x\right|_{\pi/6}^{\pi/2} = \fbox{$\dfrac{\pi^2}{9} + 2\sqrt{3}$}$

Calcular a integral definida $I\ =\ \displaystyle\int_0^1 \dfrac{y^2}{\sqrt{4 - 3y}}\ dy$.

Seja $4 - 3y = x$, $y = \dfrac{4 - x}{3}$ e $dx = -3dy$.

 

$I\ =\ -\dfrac{1}{27}\displaystyle\int_4^1 \dfrac{16 - 8x + x^2}{\sqrt{x}}\ dx\ =\ -\dfrac{1}{27}\left.\left(32\sqrt{x} - \dfrac{16}{3}\sqrt{x^3} + \dfrac{2}{5}\sqrt{x^5}\right)\right|_4^1 =$

 

$=\ -\dfrac{32 - 64 - \dfrac{16}{3} + \dfrac{128}{3} + \dfrac{2}{5} - \dfrac{64}{5}}{27} = \fbox{$\dfrac{106}{405}$}$

terça-feira, 15 de março de 2022

segunda-feira, 14 de março de 2022

sexta-feira, 11 de março de 2022

Calcular $I\ =\ \displaystyle\int_0^1 (1 - 2x)^3\ dx$.

Seja $u = 1 - 2x,\ du = -2dx$.

$I\ =\ -\dfrac{1}{2}\displaystyle\int_1^{-1} u^3\ du\ =\ -\dfrac{1}{2} \cdot \left.\dfrac{u^4}{4}\right|_1^{-1} = -\dfrac{1}{2}\left(\cancel{\dfrac{1}{4}} - \cancel{\dfrac{1}{4}}\right) = \fbox{$0$}$

quarta-feira, 9 de março de 2022

Calcular $I\ =\ \displaystyle\int x^2 \sec(x^3)\ dx$.

Seja $u = x^3,\ du = 3x^2\ dx$.

$I\ =\ \dfrac{1}{3}\displaystyle\int \sec{u}\ du\ =\ \dfrac{\log |\sec u + \tan u|}{3} + c = \fbox{$\log \left|\sqrt[3]{\sec(x^3) + \tan(x^3)}\right| + c$}$

terça-feira, 8 de março de 2022