$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 07-07-2023.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.
Mostrando postagens com marcador mecânica. Mostrar todas as postagens
Mostrando postagens com marcador mecânica. Mostrar todas as postagens

segunda-feira, 21 de fevereiro de 2022

Software: simulação de uma partícula em um recipiente.

Entre com, separadas por ponto e vírgula ";", a posição $x$, a posição $y$, a velocidade $v_x$, a velocidade $v_y$, o raio da partícula $r$, e a gravidade $g$.

Exemplo: entre com "5; 30; 3; 2; 1; 9".




Simulação:

segunda-feira, 29 de julho de 2019

Exercício: determinando a máxima velocidade em uma curva sem derrapar.

Considere uma pista contida num plano horizontal. A máxima velocidade com que um carro pode fazer uma curva de raio $80$ metros sem derrapar é de $20\ m/s$. Determine a máxima velocidade que esse carro pode ter, ao fazer uma curva de $20$ metros.

Resolução:

Horizontalmente, a força resultante é a centrípeta, e é composta apenas da força de atrito, logo são iguais.

Considerando constante o coeficiente de atrito $\mu$, na iminência de derrapar: $\cancel{m}g\mu = \cancel{m}\dfrac{v^2}{R}\ \Rightarrow\ \mu = \dfrac{v^2}{gR}$

$\mu = \dfrac{20^2}{80g} = \dfrac{5}{g}$

Fazendo a curva de raio $20$ metros:

$\cancel{m}\cancel{g}\dfrac{5}{\cancel{g}} = \cancel{m}\dfrac{v^2}{20}\ \therefore\ \fbox{$v = 10\ m/s$}$

domingo, 28 de julho de 2019

Demonstração: lançamento oblíquo a ângulos complementares.

Demonstre que lançamentos oblíquos a ângulos complementares são equidistantes.

$x_{max} = \dfrac{v_0^2 \sin 2\theta}{g}$

$\sin 2\theta\ =\ \sin (\pi - 2\theta) = \sin [2(\dfrac{\pi}{2} - \theta)]$

sábado, 27 de julho de 2019

Exercício: tempo de queda dada a distância percorrida em uma unidade de tempo.

Um corpo cai, em queda livre, de uma altura tal que durante o último segundo de queda ele percorre $1/4$ da altura total. Calcular o tempo de queda, supondo nula a velocidade inicial do corpo.

Resolução:

De $S = S_0 + v_0t + \dfrac{at^2}{2}$ :

$S = \dfrac{at^2}{2}$

Se no último segundo o corpo percorre $\dfrac{1}{4}$  da altura, antes do último segundo terá percorrido $1 - \dfrac{1}{4} = \dfrac{3}{4}$ da altura.

$\dfrac{3}{4}S = \dfrac{a(t-1)^2}{2}$

$\dfrac{3}{4} \cdot \dfrac{at^2}{2} = \dfrac{a(t-1)^2}{2}$

$4t^2 - 8t + 4 = 3t^2$

$t^2 - 8t + 4 = 0\ , \mathbb{U} = (1, +\infty)$

$t = (4 + 2\sqrt{3})\ s$

Exercício: instante de encontro de dois móveis.

Na figura, estão representados os gráficos das velocidades de dois móveis em função do tempo. Esses móveis partem de um mesmo ponto, a partir do repouso, e percorrem uma mesma trajetória retilínea. Em que instante eles se encontram?
Resolução:

Chamemos de $a_1$ a aceleração de um móvel, e de $a_2$ a aceleração do outro.

De $v = v_0 + at$:

$4a_1 = (4-3)a_2\ \therefore\ a_2 = 4a_1$

De $s = s_0 + v_0t + \dfrac{at^2}{2}$:

$\dfrac{a_1 t^2}{2} = \dfrac{4a_1 (t-3)^2}{2}$

$t^2 - 8t + 12 = 0$

$t = 6\ s$ ($t$ deve ser maior que $3\ s$).

sexta-feira, 26 de julho de 2019

Exercício: tempo de queda livre.

Um corpo cai em queda livre, percorrendo a primeira metade de sua trajetória em $1\ s$. A trajetória inteira será percorrida em quantos segundos?

Resolução:


Da função horária $S(t) = S_0 +  v_0t + \dfrac{at^2}{2}$:

$\dfrac{S}{2} = \dfrac{a}{2}$

$S = a = \dfrac{2a}{2} = \dfrac{a(\sqrt{2})^2}{2}$

Portanto percorrerá toda a trajetória em $\sqrt{2}\ s$.

Exercício: velocidade de lançamento e uma determinada altura.

Em uma experiência de laboratório, verificou-se que a velocidade de lançamento de um corpo para que este atingisse uma certa altura é $v$, quando lançado verticalmente. Um aluno repete a experiência, porém imprime ao corpo a velocidade $2v$. Qual será a velocidade do corpo ao atingir a altura do primeiro ensaio?

Resolução:



Por Torricelli:

$0 = v^2 + 2a\Delta S$

$3v^2 = 4v^2 + 2a\Delta S$

$(\sqrt{3}v)^2 = (2v)^2 + 2a\Delta S$

Portanto a velocidade será $v\sqrt{3}$.

quinta-feira, 25 de julho de 2019

Exercício: diâmetro de um pneu dada sua rotação e a velocidade do veículo.

O pneu de um automóvel a $105,5 km/h$ gira a uma velocidade de $700$ rotações por minuto. Qual é o diâmetro desse pneu?

Resolução:

O pneu percorrerá $\dfrac{105,5}{60} \cdot 1000 \approx 1758$ metros em um minuto.

$1758 = 700 \cdot \pi \cdot d$

$d \approx 0,8$

$d \approx 80 cm$

quarta-feira, 24 de julho de 2019

Exercício: velocidade angular e linear.

Uma partícula está em movimento circular, de raio igual a $10\ cm$, com a velocidade angular de $0,20\ rad/s$. Determine a velocidade linear, em $km/h$.

$v = 0,10\ \cdot\ 0,20\ \cdot\ 3,6\ =\ 7,2\ \cdot\ 10^{-2}\ km/h$

quarta-feira, 5 de dezembro de 2012

Velocidade como média harmônica e aritmética no MRU.

Consideremos um móvel que se desloca em um trajetória em dois regimes de velocidade constante, chamado em Cinemática de movimento uniforme. No primeiro regime ele possui velocidade $v_1$, desloca-se $S_1$ unidades de comprimento em $t_1$ unidades de tempo. No segundo regime ele possui velocidade $v_2$, desloca-se $S_2$ unidades de comprimento em $t_2$ unidades de tempo. Chamemos de $v_m$ a velocidade média do móvel em todo trajeto.

a) Se $S_1\ =\ S_2\ =\ S$, ou seja, se ele percorre metade do percurso com velocidade $v_1$ e a outra metade com velocidade $v_2$, teremos:

$v_m\ =\ \dfrac{S_1 + S_2}{t_1 + t_2}\ =\ \dfrac{2S}{\dfrac{S}{v_1} + \dfrac{S}{v_2}}\ =\ \dfrac{2}{\dfrac{1}{v_1} + \dfrac{1}{v_2}}$

Ou seja, a velocidade média será a média harmônica das duas velocidades.
__

b) Se $t_1\ =\ t_2\ =\ t$, ou seja, se ele percorre metade do tempo com velocidade $v_1$ e a outra metade com velocidade $v_2$, teremos:

$v_m\ =\ \dfrac{S_1 + S_2}{t_1 + t_2}\ =\ \dfrac{v_1\ \cdot\ t\ +\ v_2\ \cdot\ t}{2t}\ =\ \dfrac{v_1 + v_2}{2}$

Ou seja, a velocidade média será a média aritmética das duas velocidades.

domingo, 8 de julho de 2012

A terceira lei de Kepler.



Enunciado:

Os quadrados dos períodos de revolução dos planetas são proporcionais aos cubos dos raios de suas órbitas.

De fato:

Considerando as órbitas trajetórias circulares, a força resultante sobre o astro será centrípeta. E usando a gravitação de Newton, teremos:

$\dfrac{mv^2}{R}\ =\ G\dfrac{mM}{R^2}$

Onde $m$ é a massa do planeta, $M$ é a massa do Sol, $R$ é a distância que separa os astros, $v$ é a velocidade do planeta, e $G$ é a constante gravitacional universal.

Dela concluímos:

$\dfrac{v^2}{R}\ =\ G\dfrac{M}{R^2}$

$v\ =\ \sqrt{\dfrac{GM}{R}}$

Como o comprimento da trajetória é $2\pi R$, e chamando de $T$ o período de translação, teremos:

$T\ =\ \dfrac{2\pi R}{v}\ =\ \dfrac{2\pi R}{\sqrt{\dfrac{GM}{R}}}\ =\ \sqrt{\dfrac{4 \pi^2 R^3}{GM}}$

Donde $T^2\ =\ \dfrac{4 \pi^2 R^3}{GM}$.

Notemos que $\dfrac{4 \pi^2}{GM}$ é constante. Logo:

$T^2\ \propto\ R^3$

Vale destacar mais um fato:

Segundo as observações de Tycho Brahe, tomando $T$ em anos e $R$ em unidades astronômicas, a constante de proporcionalidade é $1$. Logo:

$\dfrac{4 \pi^2}{GM}\ =\ 1 \Rightarrow\ GM\ =\ 4 \pi^2$

Ou seja, se Newton, ao enunciar a lei da gravitação universal, se conhecesse a massa do Sol, poderia determinar a constante $G$ 100 anos antes de Cavendish.

quinta-feira, 5 de julho de 2012

Reação normal no movimento circular vertical.



Consideremos um objeto descrevendo um movimento circular vertical com velocidade tangencial constante.

Em tais condições a resultante será a força centrípeta $\overrightarrow{F_c}$.

Chamemos de $\overrightarrow{P}$ seu peso e $\overrightarrow{P_c}$ sua componente centrípeta. Chamemos ainda de $\overrightarrow{N}$ a reação de apoio.

Na posição indicada pela gravura, temos:

$P_c\ =\ P \cos\ \phi$

$F_c\ =\ N\ +\ P_c$

$F_c\ =\ N\ +\ P \cos \phi$

Observemos que $\phi$ e $\theta$ são complementares. Logo $\cos\ \phi\ =\ \sin\ \theta$.

Assim:

$N\ =\ F_c\ -\ P \sin\ \theta$ (eq. principal).

Observemos que:

Em A:

$\theta\ =\ 0\ \Rightarrow\ \sin\ \theta\ =\ 0\ \Rightarrow\ N\ =\ F_c$

Em B:

$\theta\ =\ \dfrac{\pi}{2}\ \Rightarrow\ \sin\ \theta\ =\ 1\ \Rightarrow\ N\ =\ F_c\ -\ P$

Em C:

$\theta\ =\ \pi\ \Rightarrow\ \sin\ \theta\ =\ 0\ \Rightarrow\ N\ =\ F_c$

Em D:

$\theta\ =\ \dfrac{3\pi}{2}\ \Rightarrow\ \sin\ \theta\ =\ -1\ \Rightarrow\ N\ =\ F_c\ +\ P$

Desenvolvendo (eq. principal), teremos:

$N\ =\ \dfrac{m\ \cdot\ v^2}{R}\ -\ m\ \cdot\ g\ \cdot\ \sin\ \theta$

$N\ =\ (\dfrac{v^2}{R}\ -\ g \sin\ \theta)\ \cdot\ m$

Notemos que para o objeto possa completar a circunferência, devemos ter $N\ \geq\ 0$, donde concluímos que $\dfrac{v^2}{R}\ \geq\ g \sin\ \theta$.

O máximo valor de $\sin\ \theta$ é $1$. Logo devemos ter:

$v\ \geq\ \sqrt{gR}$ para que o ciclo seja possível.

Considerando a instância em que $g\ =\ 10\ \dfrac{m}{s^2}$, $m\ =\ 1\ kg$, $R\ =\ 10\ m$, e $v\ =\ 10\ \dfrac{m}{s}$, temos:

$N\ =\ 10\ -\ 10 \sin\ \theta$

Cujo gráfico é:

quarta-feira, 4 de julho de 2012

Alcance do lançamento oblíquo em um plano oblíquo.



O tempo $t$ necessário para o deslocamento horizontal será o mesmo para o deslocamento vertical.

Tomando por convenção o sinal positivo para o deslocamento para cima, verticalmente o objeto deve atingir o espaço $- A \sin \phi$.

Estudando o movimento vertical:

$- A \sin \phi\ =\ (V_0 \sin \theta)t\ +\ \dfrac{g}{2}t^2$

$t\ =\ \dfrac{- V_0 \sin \theta\ +\ \sqrt{{V_0}^2 \sin^2 \theta\ -\ 2gA \sin \phi}}{g}$

Estudando o movimento horizontal:

$A \cos \phi\ =\ (V_0 \cos \theta)t$

Substituindo $t$ na conclusão vertical:

$\dfrac{A \cos \phi}{V_0 \cos \theta}\ =\ \dfrac{- V_0 \sin \theta\ +\ \sqrt{{V_0}^2 \sin^2 \theta\ -\ 2gA \sin \phi}}{g}$

${V_0}^2 \sin^2 \theta\ -\ 2gA \sin \phi\ =\ \left(g \dfrac{A \cos \phi}{V_0 \cos \theta}\ +\ V_0 \sin \theta\right)^2$

$\left(\dfrac{g^2 \cos^2 \phi}{{V_0}^2 \cos^2 \theta}\right) A^2\ +\ 2g [(\sin \phi)\ +\ (\cos \phi)(\tan \theta)] A\ =\ 0$

$A\ =\ \dfrac{2{V_0}^2 (\cos \phi)(\sin \theta)(\cos \theta)\ +\ 2{V_0}^2 (\cos^2 \theta) (\sin \phi)}{g \cos^2 \phi}\ =$

$=\ \dfrac{2{V_0}^2 (\sin \theta)(\cos \theta)}{g \cos \phi}\ +\ \dfrac{2{V_0}^2 (\cos^2 \theta)(\tan \phi)}{g \cos \phi}\ =$

$=\ \fbox{$\dfrac{2{V_0}^2 \cos \theta}{g \cos \phi} [(\sin \theta)\ +\ (\cos \theta)(\tan \phi)]$}$

Exercício: objetos flutuando no equador.

Esta questão não requer meditações profundas, mas é um tanto cômica.

Imagine que a velocidade de rotação da Terra fosse aumentando gradualmente. Para um determinado valor dessa velocidade, os corpos situados na superfície da Terra, na linha do Equador, estariam flutuando, sem exercer compressão sobre o solo (os pesos aparentes desses corpos seriam nulos) Sendo o raio da Terra $R\ =\ 6400\ km$ e considerando $g\ =\ 10\ \dfrac{m}{s^2}$, calcule qual seria o período de rotação da Terra quando isso acontecesse.

Resolução:



Se por exemplo uma pessoa for o objeto estudado, ela estará acompanhando a rotação da terra e terá resultante centrípeta. Tendo apenas duas forças consideradas:

$\overrightarrow{F_R}\ =\ \overrightarrow{P}\ +\ \overrightarrow{N}$

$F_R\ =\ P\ -\ N$

Mas se o peso aparente é nulo, teremos $\overrightarrow{N}\ = \overrightarrow{0}$.

Sendo $\omega$ a velocidade angular da Terra, teremos:

$m\ \cdot\ \omega^2\ \cdot R\ =\ m\ \cdot\ g$

Donde:

$\omega\ =\ \sqrt{\dfrac{g}{R}}$

Como $\omega\ =\ \dfrac{2\pi}{T}$, sendo $T$ o período, teremos:

$T\ =\ \dfrac{2\pi}{\sqrt{\dfrac{g}{R}}}$

Aplicando os valores, teremos $T\ \approx\ 1h\ 24'$. O dia teria aproximadamente apenas uma hora e meia.

segunda-feira, 25 de junho de 2012

Velocidade de queda com resistência do ar.

Consideremos um corpo em "queda-livre", mas substanciando a resistência do ar.



Teremos agindo sobre ele a força-peso e a força de resistência aérea.

É certo que $\overrightarrow{f_a}$ depende de fatores como formato, tipo de material usado em sua confecção, seção transversal reta, entre outros. Mas de uma forma simplificada consideremos uma função linear da velocidade de queda, válida com aproximação para uma grande gama de casos: $f_a\ =\ kv$.

Sabemos que inicialmente o objeto cairá com velocidade crescente até atingir uma velocidade limite de queda, e a partir daí cairá com movimento uniforme, situação em que a aceleração será nula, por condição da resultante das forças sobre ele aplicadas ser nula.

Analisaremos a velocidade de tal objeto.

Em uma situação ideal, agirá sobre o objeto apenas o peso e a força resistente:

$P\ -\ f_a\ =\ ma$

Onde $m$ é sua massa e $a$ é sua aceleração.

Sendo $v$ sua velocidade de queda, teremos:

$mg\ -\ kv\ =\ m\dfrac{v}{t}$

$gt\ -\ \dfrac{kt}{m}v\ =\ v$

$v\ =\ \dfrac{gt}{\dfrac{kt}{m}\ +\ 1}$

Notemos que:

Quando $t\ =\ 0 $, $ v\ =\ 0$.

A velocidade-limite de queda dá-se quando $P\ =\ f_a$, ou seja:

$mg\ =\ kv\ \Rightarrow\ v\ =\ \dfrac{mg}{k}$

E a partir desta condição o valor de $\overrightarrow{v}$ não se altera.
____________________

Para $m\ =\ 1\ kg$ e $g\ =\ 10\ \dfrac{m}{s^2}$, e $k\ =\ 5\ \dfrac{N\cdot s}{m}$, teremos:



Onde $v\ =\ \dfrac{10t}{\dfrac{5t}{1}\ +\ 1}$ está em vermelho.

E $v\ =\ \dfrac{1\ \cdot\ 10}{5}\ =\ 2$ está em azul.

quarta-feira, 20 de junho de 2012

Exercício: escada apoiada.

1) Uma escada uniforme, de $5,0 m$ de comprimento e peso igual a $40 kgf$, está em equilíbrio com sua parte superior encostada em uma parede vertical sem atrito, tendo sua base apoiada no chão a $3,0 m$ da parede.

a) Faça um diagrama correspondente à situação, mostrando todas as forças que atuam na escada.

b) Determine a reação normal da parece ($N_1$), do chão ($N_2$) e a força de atrito na escada ($f$).

2) Suponha que um homem, pesando $90 kgf$, suba lentamente na escada do problema anterior. Sendo o coeficiente de atrito entre o chão e a escada igual a $0,40$, determine a máxima distância que o homem pode subir ao longo da escada sem que ela escorregue.
____________________

Resolução:

1-a:

1-b:

Verticalmente, só temos o peso da escada e a reação de apoio $\overrightarrow{N_2}$, logo serão iguais em módulo.

$N_2\ =\ 40\ kgf$

Horizontalmente temos apenas a reação de apoio na parede $\overrightarrow{N_1}$ e a força de atrito $\overrightarrow{f}$. Portanto, iguais em módulo.

$N_1\ =\ f$

Mas como $f$ é desconhecido, utilizaremos a ferramenta do equilíbrio de rotação, considerando seu torque.

Tomando como referência o ponto de encontro da escada com a parede, teremos:

$\sum M\ =\ 0$

$M_{N_1}\ +\ M_E\ +\ M_{N_2}\ +\ M_f\ =\ 0$ (eq. 1)

Sendo $\overrightarrow{E}$ o peso da escada.

$M_{N_1}$ será nulo pois $\overrightarrow{N_1}$ está aplicada no ponto de referência.

Notemos que a componente perpendicular à escada de $\overrightarrow{E}$ fará o mesmo ângulo de inclinação da escada com relação ao chão. Ângulo tal que seu cosseno é $\dfrac{3}{5}$. Assim:

$M_E\ =\ -\ 40\ \cdot\ \dfrac{3}{5}\ \cdot\ \dfrac{5}{2}\ =\ -60\ kgf\cdot m$ Onde o torque é negativo por provocar uma rotação horária.

$\overrightarrow{N_2}$ também fará o mesmo tal ângulo com a perpendicular à escada. Assim:

$M_{N_2}\ =\ 40\ \cdot\ \dfrac{3}{5}\ \cdot\ 5\ =\ 120\ kgf\cdot m$

Já a componente perpendicular de $\overrightarrow{f}$ fará o ângulo complementar do ângulo de inclinação da escada. Assim, o cosseno do primeiro será seno do segundo. Chamemos de $\theta$ o ângulo de inclinação.

$\sin^2 \theta\ +\ (\dfrac{3}{5})^2 =\ 1$

$\sin \theta\ =\ \dfrac{4}{5}$

Temos então:

$M_f\ =\ -\ f\ \cdot\ \dfrac{4}{5}\ \cdot\ 5$

Substituindo tudo em (eq. 1):

$-60\ + 120\ -\ 4f\ =\ 0\ \Rightarrow\ f\ =\ 15\ kgf\ = N_1$
__

2:



Se um homem sobe a escada, consideremos $d$ a máxima distância para a qual a força de atrito estático será a máxima.

Seguindo os mesmos raciocínios da questão anterior, teremos $N_2\ =\ 130\ kgf$, e $f_{eM}\ =\ 40\%\ \cdot\ 130\ =\ 52\ kgf$.

Adicionando o novo termo à (eq. 1), e reconsiderando os novos valores para $f\ =\ f_{eM} $ e $ N_2$, teremos:

$-60\ + 130\ \cdot\ \dfrac{3}{5}\ \cdot\ 5\ -\ 4\ \cdot\ 52\ -\ 90\ \cdot\ \dfrac{3}{5}\ \cdot\ (5\ -\ d)\ =\ 0$

Com dois algarismos significativos: $d\ =\ 2,7\ m$.

Exercício: barra em equilíbrio.



Na estrutura em equilíbrio mostrada na figura deste problema, a barra AB tem peso desprezível. Determine o módulo da tensão $\overrightarrow{T}$ na corda BD e os módulos $F_x$ e $F_y$ das componentes horizontal e vertical da força que a articulação A exerce sobre a barra:

a) Usando as condições $\sum F_x\ =\ 0$, $\sum F_y\ =\ 0$ e $\sum M\ =\ 0$.

b) Usando apenas a condição $\sum M\ =\ 0$, tomando os momentos sucessivamente em relação a A, B e D para obter, assim, três equações independentes, como em (a).
____________________

Resolução:

Letra a:

De $\sum F_y\ =\ 0$ temos:

$F_y\ +\ T_y\ =\ 50$

De $\sum F_x\ =\ 0$ temos:

$T_x\ =\ F_x$

De $\sum M\ =\ 0$ temos:

$T_y\ \cdot\ 40\ =\ 50\ \cdot\ 30$
__

$T_y\ =\ \dfrac{75}{2}\ kgf$

$F_y\ =\ \dfrac{25}{2}\ kgf$

Observemos que o ângulo entre a corda e a barra é tal que sua tangente vale $\dfrac{3}{4}$. Logo:

$T_x\ =\ \dfrac{\dfrac{75}{2}}{\dfrac{3}{4}}\ =\ 50\ kgf\ =\ F_x$

Por Pitágoras:

$T^2\ =\ (\dfrac{75}{2})^2\ +\ {50}^2$

$T\ =\ \dfrac{125}{2}\ kgf$
_____

Letra b:



Com relação a A:

$T_y\ \cdot\ 40\ =\ 50\ \cdot 30\ \Rightarrow\ T_y\ =\ \dfrac{75}{2}$

Com relação a B:

$50 \cdot\ 40\ =\ F_y\ \cdot 40\ \Rightarrow\ F_y\ =\ \dfrac{25}{2}$

Com relação a D, $\overrightarrow{F_y}$ terá torque nulo por não ter componente perpendicular à reta que passa por D. O mesmo pode-se dizer quanto a $\overrightarrow{T_x}\ +\ \overrightarrow{T_y}\ =\ \overrightarrow{T}$. Atuarão apenas $\overrightarrow{F_x}$ e uma componente de $\overrightarrow{P}$. Iremos primeiro calcular tal componente.

Traçando uma reta pelos pontos D e aplicação de $\overrightarrow{P}$, teremos um triângulo isósceles, tal que os ângulos da base serão $\dfrac{\pi}{4}$. Observemos também que a componente perpendicular à esta reta conterá a projeção de $\overrightarrow{P}$ sobre a perpendicular à mesma. Teremos assim:

$F_x\ \cdot\ 30\ =\ \dfrac{50}{\sqrt{2}}\ \cdot\ 30\sqrt{2}\ \Rightarrow\ F_x\ =\ 50\ kgf$

A física do exercício anaeróbio rosca direta.



Como podemos observar, temos um aparelho alavanca interpotente. O músculo bíceps exerce a potência, enquanto o peso a ser levantado, a resistência.

Para manter o sistema em equilíbrio ou levantar o peso, o torque do bíceps deve ser igual ou maior ao momento da força peso da resistência.

Supondo $\overrightarrow{F}$ a potência e $\overrightarrow{P}$ a resistência, temos:

$\sum M\ =\ 0$

$M_F\ +\ M_P\ =\ 0$

Em um antebraço médio, o tendão do bíceps localiza-se a $4 cm$ do fulcro, e a mão a $32 cm$. E convencionando-se o sentido anti-horário como positivo, temos:

$4F\ =\ 32P$

$F\ =\ 8P$

Como fisioculturista modelo, usaremos o Ronnie Coleman, o qual é capaz de fazer o exercício com $90 kgf$.

Assim, seus tendões suportam, apenas em equilíbrio na horizontal, uma tensão de $T\ =\ 8\ \cdot\ 45 = 360\ kgf$ em cada tendão.

E fugindo um pouco da área matemática, ele faz 4 séries de 12 repetições com esta carga!

sexta-feira, 15 de junho de 2012

Exercício: um objeto atirado horizontalmente do alto de uma escada, em qual degrau irá cair?

Uma bola é lançada do alto de uma escada com uma velocidade horizontal de módulo igual a $4,0 m/s$. Os degraus tem $20 cm$ de altura por $35 cm$ de largura. Qual o degrau que a bola irá atingir? (Considere $g = 10 m/s^2$.)

Curso de Física 1. 4ª edição.
Antônio Máximo. Beatriz Alvarenga.
Cap. 4. Problemas suplementares 27.
____________________

Chamemos de $t$ o tempo de queda da bola. Neste tempo ela percorrerá $S_v$ de espaço vertical e $S_h$ de espaço horizontal. Chamemos também de $d$ o número de degraus que a bola irá percorrer.

$s_v\ =\ 0,20\ \cdot\ d$
$s_h\ =\ 0,35\ \cdot\ d$

$t\ =\ \sqrt{\dfrac{S_v}{5,0}}$
$t\ =\ \dfrac{S_h}{4,0}$

$\dfrac{d}{25}\ =\ d^2\ \cdot\ \dfrac{49}{4,0\ \cdot\ 10^2}\ \cdot\ \dfrac{1}{16}$

$d\ =\ \dfrac{2,5\ \cdot\ 10^2}{49}\ =\ 5,1\ degraus$

O menor inteiro maior que $5,1$ é $6$. Portanto a bola irá atingir o 6º degrau.

quarta-feira, 13 de junho de 2012

O ganho de massa de um satélite e o efeito orbital.

Imaginemos um astro que orbita outro. Mesmo que irrisório, o ganho de massa existe pela acumulação de poeira cósmica.

Seria interessante percebermos o efeito deste ganho no movimento do astro-satélite.

Supondo que sua velocidade linar não varie e que sua tragetória seja circular, temos:

$F_g\ =\ G \dfrac{Mm}{R^2}\ =\ F_c\ =\ (m+\Delta m) \dfrac{v^2}{R}$

$G \dfrac{Mm}{R^2}\ =\ m \dfrac{v^2}{R}\ +\ \Delta m \dfrac{v^2}{R}$

$G \dfrac{Mm}{R}\ =\ m\ \cdot\ v^2\ +\ \Delta m \cdot\ v^2$

$R\ =\ \dfrac{GMm}{v^2 (m\ +\ \Delta m)}$

Observando o gráfico de uma função análoga $f(x)\ =\ \dfrac{1}{1+x}$, temos:



Uma hipérbole transladada.

Observamos que à medida que o incremento de massa aumenta, o raio orbital diminui.