$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 29-09-2024.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

sábado, 8 de dezembro de 2012

Exercício: criação de coelhos.

(UFMG) Uma criação de coelhos foi iniciada há exatamente um ano e, durante esse período, o número de coelhos duplicou a cada $4$ meses. Hoje, parte dessa criação deverá ser vendida para se ficar com a quantidade inicial de coelhos. Para que isso ocorra, qual a porcentagem da população atual dessa criação de coelhos deve ser vendida?

Resolução:

Chamemos de $c$ a quantidade inicial de coelhos.

Como em um ano temos $3$ períodos de $4$ meses, o número de coelhos será multiplicada por $2^3\ =\ 8$.

Assim, chamando de $p$ o percentual a ser vendido, teremos:

$c\ =\ (1 - p)\ \cdot\ 8c$

$p\ =\ 1 - \dfrac{1}{8}\ =\ 87,5\ \%$

Nenhum comentário:

Postar um comentário