$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 29-09-2024.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

sexta-feira, 7 de dezembro de 2012

Exercício: cálculo de parcela de débito.

(Cesgranrio-RJ) Carlos contraiu uma dívida que foi paga com uma taxa de juros ao mês e constante. Porém, o recibo do mês de fevereiro extraviou-se e Carlos necessita deste valor para o cálculo do Imposto de Renda. Os valores conhecidos são:

Janeiro->$R\$\ 1.000,00$
Março->$R\$\ 1.210,00$
Abril->$R\$\ 1.331,00$


Com base nos dados acima, qual foi a quantia que Carlos pagou em fevereiro?

Resolução:

Chamemos de $P_f$ a parcela de fevereiro, e $i$ a taxa de juros. Teremos:

$1210\ =\ (1 + i)^2\ \cdot\ 1000$

$(1 + i)\ =\ \sqrt{\dfrac{1210}{1000}}$

$i\ =\ 1,1 - 1 = 10\ \%$

Assim:

$P_f\ =\ (1 + 10\%)\ \cdot\ 1000\ =\ R\$\ 1.100,00$

Observemos que:

$1000\ \cdot\ (1,1)^3\ =\ R\$\ 1.331,00$

Exatamente a parcela de abril.

Nenhum comentário:

Postar um comentário