Um pedreiro demora um certo tempo para construir um jardim circular de raio $10\ m$. Em volta do jardim demora um tempo $44 \%$ menor para construir uma calçada circular em torno do jardim. Se o tempo de construção for diretamente proporcional à área a construir, determinar a largura da calçada.
O jardim tem $100\pi$ de área. Sendo $\ell$ a largura procurada, a calçada terá uma área de $(10 + \ell)^2 \pi - 100\pi$.
Se o tempo de construção da calçada foi $0,56$ do tempo de construção do jardim:
$(10 + \ell)^2 \pi - 100\pi = 56\pi\ \Rightarrow\ \ell^2 + 20\ell - 56 = 0\ \Rightarrow\ \fbox{$\ell = 2\sqrt{39} - 10$}$.
Nenhum comentário:
Postar um comentário