$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 29-09-2024.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

segunda-feira, 22 de julho de 2019

Exercício: razão entre os comprimentos de onda.

(FUVEST-SP) Considere uma onda de rádio de $2\ MHz$ de frequência, que se propaga em um meio material, homogêneo e isotrópico, com $80\%$ da velocidade com que se propagaria no vácuo. Qual a razão $\lambda_0 / \lambda$ entre os comprimentos de onda no vácuo ($\lambda_0$) e no meio material ($\lambda$)?


Resolução:

A razão $\dfrac{\lambda_0}{\lambda}$, por a onda manter a mesma frequência, tem o mesmo valor da razão entre as velocidades $\dfrac{v_0}{v}$ entre a velocidade no vácuo e a velocidade no meio.

Como sabemos que $v\ =\ 80\%\ \cdot\ v_0$, teremos:

$\dfrac{\lambda_0}{\lambda}\ =\ \dfrac{v_0}{80\%\ \cdot\ v_0}\ =\ 1,25$

Nenhum comentário:

Postar um comentário