$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 07-07-2023.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

segunda-feira, 29 de julho de 2019

Exercício: determinar os coeficientes de um sistema linear sabendo que é possível e indeterminado.

Seja $a$ um parâmetro real não nulo. Se o sistema $\begin{cases}ax + a^2y = 0\\ a^2x + a^4y = 0\end{cases}$ tem uma infinidade de soluções, qual o valor de $a$?

O determinante da matriz dos coeficientes deve ser nulo para que um sistema linear seja impossível ou indeterminado, como o enunciado diz que ele é possível, logo é indeterminado.

$\begin{vmatrix} a & a^2\\ a^2 & a^4\end{vmatrix} = 0\ \Rightarrow a^5 - a^4 = 0\ \therefore\ a = 0\ \vee\ a = 1$

Como $a$ é real não nulo, $\fbox{$a = 1$}$.

Nenhum comentário:

Postar um comentário