$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 07-07-2023.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

terça-feira, 23 de julho de 2019

Exercício: ondulatória - determinando interferência.

Ondas produzidas pela fonte F refletem-se na superfície S, com inversão de fase e superpõem-se com as ondas diretas no ponto P, conforme a figura. Considerando que as ondas em questão tem comprimento de onda igual a $4,0\ m$, o ponto P é um mínimo ou um máximo de interferência?

Resolução:

Duas frentes de onda percorrerão dois caminhos distintos, interferindo-se no ponto P: uma ao longo do segmento $\overline{FP}$, e outra refletindo-se na superfície S.

O primeiro percorrerá $8\ m$, o segundo percorrerá $2\ \cdot\ \sqrt{3^2 + (\dfrac{8}{2})^2}\ =\ 10\ m$, de tal forma que a diferença será de $\Delta d\ =\ 2\ m$.

A metade do comprimento de onda é de $2\ m$, que é um múltiplo ímpar de $\Delta d$, e como a segunda frente de onda sofre inversão de fase, a interferência será construtiva.

Nenhum comentário:

Postar um comentário