$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 25-02-2025.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

terça-feira, 17 de julho de 2012

Quantas intersecções determinam $n$ retas?

Vamos estudar o que ocorre no caso de termos apenas retas coplanares e concorrentes, analisando uma única:



Teremos $p$ intersecções para $p$ retas concorrentes a uma única.

Como globalmente temos $p+1$ retas, o número de intersecções contadas será de $p(p+1)$. Mas como cada ponto foi computado $2$ vezes, teremos um total de $i_{p+1} = \dfrac{p(p+1)}{2}$ intersecções para $p+1$ retas.

Se tivermos paralelas ou reversas em jogo, consideremos $m$ o número de tais. Assim devemos subtrair $m$ pontos de concorrência que foram computados a mais:

$i_{p+1;m}\ =\ \dfrac{p(p+1)}{2}\ -\ m$

Tomando $n\ =\ p+1$:

$i_{n;m} = \dfrac{n(n-1)}{2}\ -\ m$

________________________________________

Exemplo:



$n = 3$ e $m = 0$.

$i_{3;0}\ =\ \dfrac{3\ \cdot\ 2}{2}\ -\ 0\ =\ 3$

________________________________________

Exemplo:



$n = 4$ e $m = 3$.

$i_{4;3}\ =\ \dfrac{4\ \cdot\ 3}{2}\ -\ 3\ =\ 3$

________________________________________

Exemplo :



Neste caso especial, inicialmente excluiremos uma não-concorrente:

$n = 3$ e $m = 2$.

$i_{3;2}\ =\ \dfrac{3\ \cdot\ 2}{2}\ -\ 2\ =\ 2$

E posteriormente excluiremos a outra:

$n = 3$ e $m = 2$.

$i_{3;2}\ =\ \dfrac{3\ \cdot\ 2}{2}\ -\ 2\ =\ 2$

E depois somamos os resultados: $2\ +\ 2\ =\ 4$.

Este é um caso em que devemos tratar cada conjunto de não-concorrentes de forma especial.

Quantas intersecções determinam $n$ retas?

Vamos estudar o que ocorre no caso de termos apenas retas coplanares e concorrentes, analisando uma única:



Teremos $p$ intersecções para $p$ retas concorrentes a uma única.

Como globalmente temos $p+1$ retas, o número de intersecções contadas será de $p(p+1)$. Mas como cada ponto foi computado $2$ vezes, teremos um total de $i_{p+1} = \dfrac{p(p+1)}{2}$ intersecções para $p+1$ retas.

Se tivermos paralelas ou reversas em jogo, consideremos $m$ o número de tais. Assim devemos subtrair $m$ pontos de concorrência que foram computados a mais:

$i_{p+1;m}\ =\ \dfrac{p(p+1)}{2}\ -\ m$

Tomando $n\ =\ p+1$:

$i_{n;m} = \dfrac{n(n-1)}{2}\ -\ m$

________________________________________

Exemplo:



$n = 3$ e $m = 0$.

$i_{3;0}\ =\ \dfrac{3\ \cdot\ 2}{2}\ -\ 0\ =\ 3$

________________________________________

Exemplo:



$n = 4$ e $m = 3$.

$i_{4;3}\ =\ \dfrac{4\ \cdot\ 3}{2}\ -\ 3\ =\ 3$

________________________________________

Exemplo :



Neste caso especial, inicialmente excluiremos uma não-concorrente:

$n = 3$ e $m = 2$.

$i_{3;2}\ =\ \dfrac{3\ \cdot\ 2}{2}\ -\ 2\ =\ 2$

E posteriormente excluiremos a outra:

$n = 3$ e $m = 2$.

$i_{3;2}\ =\ \dfrac{3\ \cdot\ 2}{2}\ -\ 2\ =\ 2$

E depois somamos os resultados: $2\ +\ 2\ =\ 4$.

Este é um caso em que devemos tratar cada conjunto de não-concorrentes de forma especial.

domingo, 8 de julho de 2012

A terceira lei de Kepler.



Enunciado:

Os quadrados dos períodos de revolução dos planetas são proporcionais aos cubos dos raios de suas órbitas.

De fato:

Considerando as órbitas trajetórias circulares, a força resultante sobre o astro será centrípeta. E usando a gravitação de Newton, teremos:

$\dfrac{mv^2}{R}\ =\ G\dfrac{mM}{R^2}$

Onde $m$ é a massa do planeta, $M$ é a massa do Sol, $R$ é a distância que separa os astros, $v$ é a velocidade do planeta, e $G$ é a constante gravitacional universal.

Dela concluímos:

$\dfrac{v^2}{R}\ =\ G\dfrac{M}{R^2}$

$v\ =\ \sqrt{\dfrac{GM}{R}}$

Como o comprimento da trajetória é $2\pi R$, e chamando de $T$ o período de translação, teremos:

$T\ =\ \dfrac{2\pi R}{v}\ =\ \dfrac{2\pi R}{\sqrt{\dfrac{GM}{R}}}\ =\ \sqrt{\dfrac{4 \pi^2 R^3}{GM}}$

Donde $T^2\ =\ \dfrac{4 \pi^2 R^3}{GM}$.

Notemos que $\dfrac{4 \pi^2}{GM}$ é constante. Logo:

$T^2\ \propto\ R^3$

Vale destacar mais um fato:

Segundo as observações de Tycho Brahe, tomando $T$ em anos e $R$ em unidades astronômicas, a constante de proporcionalidade é $1$. Logo:

$\dfrac{4 \pi^2}{GM}\ =\ 1 \Rightarrow\ GM\ =\ 4 \pi^2$

Ou seja, se Newton, ao enunciar a lei da gravitação universal, se conhecesse a massa do Sol, poderia determinar a constante $G$ 100 anos antes de Cavendish.

A terceira lei de Kepler.



Enunciado:

Os quadrados dos períodos de revolução dos planetas são proporcionais aos cubos dos raios de suas órbitas.

De fato:

Considerando as órbitas trajetórias circulares, a força resultante sobre o astro será centrípeta. E usando a gravitação de Newton, teremos:

$\dfrac{mv^2}{R}\ =\ G\dfrac{mM}{R^2}$

Onde $m$ é a massa do planeta, $M$ é a massa do Sol, $R$ é a distância que separa os astros, $v$ é a velocidade do planeta, e $G$ é a constante gravitacional universal.

Dela concluímos:

$\dfrac{v^2}{R}\ =\ G\dfrac{M}{R^2}$

$v\ =\ \sqrt{\dfrac{GM}{R}}$

Como o comprimento da trajetória é $2\pi R$, e chamando de $T$ o período de translação, teremos:

$T\ =\ \dfrac{2\pi R}{v}\ =\ \dfrac{2\pi R}{\sqrt{\dfrac{GM}{R}}}\ =\ \sqrt{\dfrac{4 \pi^2 R^3}{GM}}$

Donde $T^2\ =\ \dfrac{4 \pi^2 R^3}{GM}$.

Notemos que $\dfrac{4 \pi^2}{GM}$ é constante. Logo:

$T^2\ \propto\ R^3$

Vale destacar mais um fato:

Segundo as observações de Tycho Brahe, tomando $T$ em anos e $R$ em unidades astronômicas, a constante de proporcionalidade é $1$. Logo:

$\dfrac{4 \pi^2}{GM}\ =\ 1 \Rightarrow\ GM\ =\ 4 \pi^2$

Ou seja, se Newton, ao enunciar a lei da gravitação universal, se conhecesse a massa do Sol, poderia determinar a constante $G$ 100 anos antes de Cavendish.

quinta-feira, 5 de julho de 2012

Exercício: cardinalidade de conjuntos.

‎(EPUSP) Depois de $n$ dias de férias, um estudante observa que:
(1) Choveu $7$ vezes, de manhã ou à tarde;
(2) Quando chove de manhã não chove a tarde;
(3) Houve $5$ tardes sem chuva;
(4) Houve $6$ manhãs sem chuva.

Então $n$ é igual a:
a) $7$.
b) $9$.
c) $10$.
d) $11$.
e) n.d.a.

Resoluçao:



Seja $x$ o número de dias onde estritamente choveu durante a manhã, $y$ o número de dias onde estritamente choveu à tarde, $w$ o número de dias onde choveu de manhã e à tarde, e $z$ o número de dias em que não choveu. Teremos:

$n\ =\ x\ +\ y\ +\ z\ +\ w$

Pela sentença (1), temos que $x\ +\ y\ +\ w\ =\ 7$.

Pela sentença (2), temos que $w\ =\ 0$.

Pela sentença (3), temos que $x\ +\ z\ =\ 5$.

Pela sentença (4), temos que $y\ +\ z\ =\ 6$.

Teremos então o sistema:

$x\ +\ y\ =\ 7$
$ x\ +\ z\ =\ 5$
$y\ +\ z\ =\ 6$


Somando todas, teremos:

$2x\ +\ 2y\ +\ 2z\ =\ 18$

Mas $x\ +\ y\ +\ z\ =\ n$

Então:

$2n\ =\ 18\ \Rightarrow\ n\ =\ 9$

Alternativa b.

Exercício: cardinalidade de conjuntos.

‎(EPUSP) Depois de $n$ dias de férias, um estudante observa que:
(1) Choveu $7$ vezes, de manhã ou à tarde;
(2) Quando chove de manhã não chove a tarde;
(3) Houve $5$ tardes sem chuva;
(4) Houve $6$ manhãs sem chuva.

Então $n$ é igual a:
a) $7$.
b) $9$.
c) $10$.
d) $11$.
e) n.d.a.

Resoluçao:



Seja $x$ o número de dias onde estritamente choveu durante a manhã, $y$ o número de dias onde estritamente choveu à tarde, $w$ o número de dias onde choveu de manhã e à tarde, e $z$ o número de dias em que não choveu. Teremos:

$n\ =\ x\ +\ y\ +\ z\ +\ w$

Pela sentença (1), temos que $x\ +\ y\ +\ w\ =\ 7$.

Pela sentença (2), temos que $w\ =\ 0$.

Pela sentença (3), temos que $x\ +\ z\ =\ 5$.

Pela sentença (4), temos que $y\ +\ z\ =\ 6$.

Teremos então o sistema:

$x\ +\ y\ =\ 7$
$ x\ +\ z\ =\ 5$
$y\ +\ z\ =\ 6$


Somando todas, teremos:

$2x\ +\ 2y\ +\ 2z\ =\ 18$

Mas $x\ +\ y\ +\ z\ =\ n$

Então:

$2n\ =\ 18\ \Rightarrow\ n\ =\ 9$

Alternativa b.

Reação normal no movimento circular vertical.



Consideremos um objeto descrevendo um movimento circular vertical com velocidade tangencial constante.

Em tais condições a resultante será a força centrípeta $\overrightarrow{F_c}$.

Chamemos de $\overrightarrow{P}$ seu peso e $\overrightarrow{P_c}$ sua componente centrípeta. Chamemos ainda de $\overrightarrow{N}$ a reação de apoio.

Na posição indicada pela gravura, temos:

$P_c\ =\ P \cos\ \phi$

$F_c\ =\ N\ +\ P_c$

$F_c\ =\ N\ +\ P \cos \phi$

Observemos que $\phi$ e $\theta$ são complementares. Logo $\cos\ \phi\ =\ \sin\ \theta$.

Assim:

$N\ =\ F_c\ -\ P \sin\ \theta$ (eq. principal).

Observemos que:

Em A:

$\theta\ =\ 0\ \Rightarrow\ \sin\ \theta\ =\ 0\ \Rightarrow\ N\ =\ F_c$

Em B:

$\theta\ =\ \dfrac{\pi}{2}\ \Rightarrow\ \sin\ \theta\ =\ 1\ \Rightarrow\ N\ =\ F_c\ -\ P$

Em C:

$\theta\ =\ \pi\ \Rightarrow\ \sin\ \theta\ =\ 0\ \Rightarrow\ N\ =\ F_c$

Em D:

$\theta\ =\ \dfrac{3\pi}{2}\ \Rightarrow\ \sin\ \theta\ =\ -1\ \Rightarrow\ N\ =\ F_c\ +\ P$

Desenvolvendo (eq. principal), teremos:

$N\ =\ \dfrac{m\ \cdot\ v^2}{R}\ -\ m\ \cdot\ g\ \cdot\ \sin\ \theta$

$N\ =\ (\dfrac{v^2}{R}\ -\ g \sin\ \theta)\ \cdot\ m$

Notemos que para o objeto possa completar a circunferência, devemos ter $N\ \geq\ 0$, donde concluímos que $\dfrac{v^2}{R}\ \geq\ g \sin\ \theta$.

O máximo valor de $\sin\ \theta$ é $1$. Logo devemos ter:

$v\ \geq\ \sqrt{gR}$ para que o ciclo seja possível.

Considerando a instância em que $g\ =\ 10\ \dfrac{m}{s^2}$, $m\ =\ 1\ kg$, $R\ =\ 10\ m$, e $v\ =\ 10\ \dfrac{m}{s}$, temos:

$N\ =\ 10\ -\ 10 \sin\ \theta$

Cujo gráfico é:

Reação normal no movimento circular vertical.



Consideremos um objeto descrevendo um movimento circular vertical com velocidade tangencial constante.

Em tais condições a resultante será a força centrípeta $\overrightarrow{F_c}$.

Chamemos de $\overrightarrow{P}$ seu peso e $\overrightarrow{P_c}$ sua componente centrípeta. Chamemos ainda de $\overrightarrow{N}$ a reação de apoio.

Na posição indicada pela gravura, temos:

$P_c\ =\ P \cos\ \phi$

$F_c\ =\ N\ +\ P_c$

$F_c\ =\ N\ +\ P \cos \phi$

Observemos que $\phi$ e $\theta$ são complementares. Logo $\cos\ \phi\ =\ \sin\ \theta$.

Assim:

$N\ =\ F_c\ -\ P \sin\ \theta$ (eq. principal).

Observemos que:

Em A:

$\theta\ =\ 0\ \Rightarrow\ \sin\ \theta\ =\ 0\ \Rightarrow\ N\ =\ F_c$

Em B:

$\theta\ =\ \dfrac{\pi}{2}\ \Rightarrow\ \sin\ \theta\ =\ 1\ \Rightarrow\ N\ =\ F_c\ -\ P$

Em C:

$\theta\ =\ \pi\ \Rightarrow\ \sin\ \theta\ =\ 0\ \Rightarrow\ N\ =\ F_c$

Em D:

$\theta\ =\ \dfrac{3\pi}{2}\ \Rightarrow\ \sin\ \theta\ =\ -1\ \Rightarrow\ N\ =\ F_c\ +\ P$

Desenvolvendo (eq. principal), teremos:

$N\ =\ \dfrac{m\ \cdot\ v^2}{R}\ -\ m\ \cdot\ g\ \cdot\ \sin\ \theta$

$N\ =\ (\dfrac{v^2}{R}\ -\ g \sin\ \theta)\ \cdot\ m$

Notemos que para o objeto possa completar a circunferência, devemos ter $N\ \geq\ 0$, donde concluímos que $\dfrac{v^2}{R}\ \geq\ g \sin\ \theta$.

O máximo valor de $\sin\ \theta$ é $1$. Logo devemos ter:

$v\ \geq\ \sqrt{gR}$ para que o ciclo seja possível.

Considerando a instância em que $g\ =\ 10\ \dfrac{m}{s^2}$, $m\ =\ 1\ kg$, $R\ =\ 10\ m$, e $v\ =\ 10\ \dfrac{m}{s}$, temos:

$N\ =\ 10\ -\ 10 \sin\ \theta$

Cujo gráfico é:

quarta-feira, 4 de julho de 2012

Alcance do lançamento oblíquo em um plano oblíquo.



O tempo $t$ necessário para o deslocamento horizontal será o mesmo para o deslocamento vertical.

Tomando por convenção o sinal positivo para o deslocamento para cima, verticalmente o objeto deve atingir o espaço $- A \sin \phi$.

Estudando o movimento vertical:

$- A \sin \phi\ =\ (V_0 \sin \theta)t\ +\ \dfrac{g}{2}t^2$

$t\ =\ \dfrac{- V_0 \sin \theta\ +\ \sqrt{{V_0}^2 \sin^2 \theta\ -\ 2gA \sin \phi}}{g}$

Estudando o movimento horizontal:

$A \cos \phi\ =\ (V_0 \cos \theta)t$

Substituindo $t$ na conclusão vertical:

$\dfrac{A \cos \phi}{V_0 \cos \theta}\ =\ \dfrac{- V_0 \sin \theta\ +\ \sqrt{{V_0}^2 \sin^2 \theta\ -\ 2gA \sin \phi}}{g}$

${V_0}^2 \sin^2 \theta\ -\ 2gA \sin \phi\ =\ \left(g \dfrac{A \cos \phi}{V_0 \cos \theta}\ +\ V_0 \sin \theta\right)^2$

$\left(\dfrac{g^2 \cos^2 \phi}{{V_0}^2 \cos^2 \theta}\right) A^2\ +\ 2g [(\sin \phi)\ +\ (\cos \phi)(\tan \theta)] A\ =\ 0$

$A\ =\ \dfrac{2{V_0}^2 (\cos \phi)(\sin \theta)(\cos \theta)\ +\ 2{V_0}^2 (\cos^2 \theta) (\sin \phi)}{g \cos^2 \phi}\ =$

$=\ \dfrac{2{V_0}^2 (\sin \theta)(\cos \theta)}{g \cos \phi}\ +\ \dfrac{2{V_0}^2 (\cos^2 \theta)(\tan \phi)}{g \cos \phi}\ =$

$=\ \fbox{$\dfrac{2{V_0}^2 \cos \theta}{g \cos \phi} [(\sin \theta)\ +\ (\cos \theta)(\tan \phi)]$}$

Alcance do lançamento oblíquo em um plano oblíquo.



O tempo $t$ necessário para o deslocamento horizontal será o mesmo para o deslocamento vertical.

Tomando por convenção o sinal positivo para o deslocamento para cima, verticalmente o objeto deve atingir o espaço $- A \sin \phi$.

Estudando o movimento vertical:

$- A \sin \phi\ =\ (V_0 \sin \theta)t\ +\ \dfrac{g}{2}t^2$

$t\ =\ \dfrac{- V_0 \sin \theta\ +\ \sqrt{{V_0}^2 \sin^2 \theta\ -\ 2gA \sin \phi}}{g}$

Estudando o movimento horizontal:

$A \cos \phi\ =\ (V_0 \cos \theta)t$

Substituindo $t$ na conclusão vertical:

$\dfrac{A \cos \phi}{V_0 \cos \theta}\ =\ \dfrac{- V_0 \sin \theta\ +\ \sqrt{{V_0}^2 \sin^2 \theta\ -\ 2gA \sin \phi}}{g}$

${V_0}^2 \sin^2 \theta\ -\ 2gA \sin \phi\ =\ \left(g \dfrac{A \cos \phi}{V_0 \cos \theta}\ +\ V_0 \sin \theta\right)^2$

$\left(\dfrac{g^2 \cos^2 \phi}{{V_0}^2 \cos^2 \theta}\right) A^2\ +\ 2g [(\sin \phi)\ +\ (\cos \phi)(\tan \theta)] A\ =\ 0$

$A\ =\ \dfrac{2{V_0}^2 (\cos \phi)(\sin \theta)(\cos \theta)\ +\ 2{V_0}^2 (\cos^2 \theta) (\sin \phi)}{g \cos^2 \phi}\ =$

$=\ \dfrac{2{V_0}^2 (\sin \theta)(\cos \theta)}{g \cos \phi}\ +\ \dfrac{2{V_0}^2 (\cos^2 \theta)(\tan \phi)}{g \cos \phi}\ =$

$=\ \fbox{$\dfrac{2{V_0}^2 \cos \theta}{g \cos \phi} [(\sin \theta)\ +\ (\cos \theta)(\tan \phi)]$}$

Exercício: objetos flutuando no equador.

Esta questão não requer meditações profundas, mas é um tanto cômica.

Imagine que a velocidade de rotação da Terra fosse aumentando gradualmente. Para um determinado valor dessa velocidade, os corpos situados na superfície da Terra, na linha do Equador, estariam flutuando, sem exercer compressão sobre o solo (os pesos aparentes desses corpos seriam nulos) Sendo o raio da Terra $R\ =\ 6400\ km$ e considerando $g\ =\ 10\ \dfrac{m}{s^2}$, calcule qual seria o período de rotação da Terra quando isso acontecesse.

Resolução:



Se por exemplo uma pessoa for o objeto estudado, ela estará acompanhando a rotação da terra e terá resultante centrípeta. Tendo apenas duas forças consideradas:

$\overrightarrow{F_R}\ =\ \overrightarrow{P}\ +\ \overrightarrow{N}$

$F_R\ =\ P\ -\ N$

Mas se o peso aparente é nulo, teremos $\overrightarrow{N}\ = \overrightarrow{0}$.

Sendo $\omega$ a velocidade angular da Terra, teremos:

$m\ \cdot\ \omega^2\ \cdot R\ =\ m\ \cdot\ g$

Donde:

$\omega\ =\ \sqrt{\dfrac{g}{R}}$

Como $\omega\ =\ \dfrac{2\pi}{T}$, sendo $T$ o período, teremos:

$T\ =\ \dfrac{2\pi}{\sqrt{\dfrac{g}{R}}}$

Aplicando os valores, teremos $T\ \approx\ 1h\ 24'$. O dia teria aproximadamente apenas uma hora e meia.

Exercício: objetos flutuando no equador.

Esta questão não requer meditações profundas, mas é um tanto cômica.

Imagine que a velocidade de rotação da Terra fosse aumentando gradualmente. Para um determinado valor dessa velocidade, os corpos situados na superfície da Terra, na linha do Equador, estariam flutuando, sem exercer compressão sobre o solo (os pesos aparentes desses corpos seriam nulos) Sendo o raio da Terra $R\ =\ 6400\ km$ e considerando $g\ =\ 10\ \dfrac{m}{s^2}$, calcule qual seria o período de rotação da Terra quando isso acontecesse.

Resolução:



Se por exemplo uma pessoa for o objeto estudado, ela estará acompanhando a rotação da terra e terá resultante centrípeta. Tendo apenas duas forças consideradas:

$\overrightarrow{F_R}\ =\ \overrightarrow{P}\ +\ \overrightarrow{N}$

$F_R\ =\ P\ -\ N$

Mas se o peso aparente é nulo, teremos $\overrightarrow{N}\ = \overrightarrow{0}$.

Sendo $\omega$ a velocidade angular da Terra, teremos:

$m\ \cdot\ \omega^2\ \cdot R\ =\ m\ \cdot\ g$

Donde:

$\omega\ =\ \sqrt{\dfrac{g}{R}}$

Como $\omega\ =\ \dfrac{2\pi}{T}$, sendo $T$ o período, teremos:

$T\ =\ \dfrac{2\pi}{\sqrt{\dfrac{g}{R}}}$

Aplicando os valores, teremos $T\ \approx\ 1h\ 24'$. O dia teria aproximadamente apenas uma hora e meia.

sábado, 30 de junho de 2012

Comprimento do gráfico cartesiano de uma função qualquer.

Consideremos o gráfico de uma função qualquer em $x$ $f(x)$.

Tendo por objetivo calcular seu comprimento, basta calcular a integral da distância $d$ entre dois pontos do gráfico cujas abscissas são os limites:



Por Pitágoras, temos que $d^2\ =\ (x_2\ -\ x_1)^2 + [f(x_2)\ -\ f(x_1)]^2$

Considerando $x_2\ -\ x_1\ =\ \delta$ e $f(x_2)\ -\ f(x_1)\ =\ f(x_1\ +\ \delta)\ -\ f(x_1)$, e para simplificar os cálculos considerar $x_1\ =\ a$, temos:

$C_{f_{a\to b}}\ =$

$=\ \{\lim_{\epsilon \to 0} \frac{\int_a^b \sqrt{\delta^2\ +\ [f(a\ +\ \delta)\ -\ f(a)]^2}\ d\delta\ -\ \int_a^{b\ -\ \epsilon} \sqrt{\delta^2\ +\ [f(a\ +\ \delta)\ -\ f(a)]^2}\ d\delta}{\epsilon}\}\ -$

$-\ \{\lim_{\epsilon \to 0} \frac{\int_a^b \sqrt{\delta^2\ +\ [f(a\ +\ \delta)\ -\ f(a)]^2}\ d\delta\ -\ \int_{b\ +\ \epsilon}^b \sqrt{\delta^2\ +\ [f(a\ +\ \delta)\ -\ f(a)]^2}\ d\delta}{\epsilon}\}$

$\int_a^b \sqrt{\delta^2\ +\ [f(a\ +\ \delta)\ -\ f(a)]^2}\ d\delta$ dá a área do gráfico $d\ \times\ \delta $.

$\int_a^{b\ -\ 1} \sqrt{\delta^2\ +\ [f(a\ +\ \delta)\ -\ f(a)]^2}\ d\delta$ seria o subtraendo da área para obtermos $d(b)$, mas como podemos ter $b\ -\ a\ \leq\ 1$ devemos subtrair de $b$ um infinitesimal $\epsilon$, mas em contrapartida devemos multiplicar a diferença de áreas por $\dfrac{1}{\epsilon}$ afim de obter uma área restante de $1\ \cdot\ d(b)$ unidades.

O mesmo raciocínio para $\int_{a\ +\ 1}^b \sqrt{\delta^2\ +\ [f(a\ +\ \delta)\ -\ f(a)]^2}\ d\delta$ afim de encontrar $d(a)$.

____________________



Exemplo:

Seja $f(x)\ =\ x$:

Como $a\ =\ 0\ \wedge\ f(0)\ =\ 0$, temos que $d(0)\ =\ 0$, ou seja:

$\lim_{\epsilon \to 0} \frac{\int_a^b \sqrt{\delta^2\ +\ [f(a\ +\ \delta)\ -\ f(a)]^2}\ d\delta\ -\ \int_{b\ +\ \epsilon}^b \sqrt{\delta^2\ +\ [f(a\ +\ \delta)\ -\ f(a)]^2}\ d\delta}{\epsilon}\ =\ 0$

$C_{f_{0\to 1}}\ =\ \lim_{\epsilon \to 0} \frac{\int_0^1 \sqrt{\delta^2\ +\ (0 + \delta\ -\ 0)^2}\ d\delta\ -\ \int_0^{1\ -\ \epsilon} \sqrt{\delta^2\ +\ (0 + \delta\ -\ 0)^2}\ d\delta}{\epsilon}$

$\int_0^1 \sqrt{2\delta^2}\ d\delta\ =\ \dfrac{\sqrt{2}}{2}$

$\int_0^{1\ -\ \epsilon} \sqrt{2\delta^2}\ d\delta =\ (1\ -\ \epsilon)^2\ \cdot\ \dfrac{\sqrt{2}}{2}\ =\ (1\ -\ 2\epsilon\ +\ \epsilon^2)\ \cdot\ \dfrac{\sqrt{2}}{2}$

Usando L'Hôpital:

$\lim_{\epsilon \to 0} \frac{\frac{\sqrt{2}}{2}\ -\ (1\ -\ 2\epsilon\ +\ \epsilon^2)\ \cdot\ \dfrac{\sqrt{2}}{2}}{\epsilon}\ =\ \lim_{\epsilon \to 0} - (-2\ +\ 2\epsilon)\ \cdot\ \dfrac{\sqrt{2}}{2}\ = \sqrt{2}$

Assim:

$C_{f_{0\to 1}}\ =\ \sqrt{2}$

Comprimento do gráfico cartesiano de uma função qualquer.

Consideremos o gráfico de uma função qualquer em $x$ $f(x)$.

Tendo por objetivo calcular seu comprimento, basta calcular a integral da distância $d$ entre dois pontos do gráfico cujas abscissas são os limites:



Por Pitágoras, temos que $d^2\ =\ (x_2\ -\ x_1)^2 + [f(x_2)\ -\ f(x_1)]^2$

Considerando $x_2\ -\ x_1\ =\ \delta$ e $f(x_2)\ -\ f(x_1)\ =\ f(x_1\ +\ \delta)\ -\ f(x_1)$, e para simplificar os cálculos considerar $x_1\ =\ a$, temos:

$C_{f_{a\to b}}\ =$

$=\ \{\lim_{\epsilon \to 0} \frac{\int_a^b \sqrt{\delta^2\ +\ [f(a\ +\ \delta)\ -\ f(a)]^2}\ d\delta\ -\ \int_a^{b\ -\ \epsilon} \sqrt{\delta^2\ +\ [f(a\ +\ \delta)\ -\ f(a)]^2}\ d\delta}{\epsilon}\}\ -$

$-\ \{\lim_{\epsilon \to 0} \frac{\int_a^b \sqrt{\delta^2\ +\ [f(a\ +\ \delta)\ -\ f(a)]^2}\ d\delta\ -\ \int_{b\ +\ \epsilon}^b \sqrt{\delta^2\ +\ [f(a\ +\ \delta)\ -\ f(a)]^2}\ d\delta}{\epsilon}\}$

$\int_a^b \sqrt{\delta^2\ +\ [f(a\ +\ \delta)\ -\ f(a)]^2}\ d\delta$ dá a área do gráfico $d\ \times\ \delta $.

$\int_a^{b\ -\ 1} \sqrt{\delta^2\ +\ [f(a\ +\ \delta)\ -\ f(a)]^2}\ d\delta$ seria o subtraendo da área para obtermos $d(b)$, mas como podemos ter $b\ -\ a\ \leq\ 1$ devemos subtrair de $b$ um infinitesimal $\epsilon$, mas em contrapartida devemos multiplicar a diferença de áreas por $\dfrac{1}{\epsilon}$ afim de obter uma área restante de $1\ \cdot\ d(b)$ unidades.

O mesmo raciocínio para $\int_{a\ +\ 1}^b \sqrt{\delta^2\ +\ [f(a\ +\ \delta)\ -\ f(a)]^2}\ d\delta$ afim de encontrar $d(a)$.

____________________



Exemplo:

Seja $f(x)\ =\ x$:

Como $a\ =\ 0\ \wedge\ f(0)\ =\ 0$, temos que $d(0)\ =\ 0$, ou seja:

$\lim_{\epsilon \to 0} \frac{\int_a^b \sqrt{\delta^2\ +\ [f(a\ +\ \delta)\ -\ f(a)]^2}\ d\delta\ -\ \int_{b\ +\ \epsilon}^b \sqrt{\delta^2\ +\ [f(a\ +\ \delta)\ -\ f(a)]^2}\ d\delta}{\epsilon}\ =\ 0$

$C_{f_{0\to 1}}\ =\ \lim_{\epsilon \to 0} \frac{\int_0^1 \sqrt{\delta^2\ +\ (0 + \delta\ -\ 0)^2}\ d\delta\ -\ \int_0^{1\ -\ \epsilon} \sqrt{\delta^2\ +\ (0 + \delta\ -\ 0)^2}\ d\delta}{\epsilon}$

$\int_0^1 \sqrt{2\delta^2}\ d\delta\ =\ \dfrac{\sqrt{2}}{2}$

$\int_0^{1\ -\ \epsilon} \sqrt{2\delta^2}\ d\delta =\ (1\ -\ \epsilon)^2\ \cdot\ \dfrac{\sqrt{2}}{2}\ =\ (1\ -\ 2\epsilon\ +\ \epsilon^2)\ \cdot\ \dfrac{\sqrt{2}}{2}$

Usando L'Hôpital:

$\lim_{\epsilon \to 0} \frac{\frac{\sqrt{2}}{2}\ -\ (1\ -\ 2\epsilon\ +\ \epsilon^2)\ \cdot\ \dfrac{\sqrt{2}}{2}}{\epsilon}\ =\ \lim_{\epsilon \to 0} - (-2\ +\ 2\epsilon)\ \cdot\ \dfrac{\sqrt{2}}{2}\ = \sqrt{2}$

Assim:

$C_{f_{0\to 1}}\ =\ \sqrt{2}$

sexta-feira, 29 de junho de 2012

Exercício: equação exponencial #4.

Resolver em $\mathbb{R}$:

$4^x\ -\ 3^{x\ -\ \dfrac{1}{2}}\ =\ 3^{x\ +\ \dfrac{1}{2}}\ -\ 2^{2x\ -\ 1}$

____________________



Resolução:

$2^{2x}\ -\ \dfrac{3^x}{\sqrt{3}}\ =\ \sqrt{3}\ \cdot\ 3^x\ -\ \dfrac{2^{2x}}{2}$

$\dfrac{2^{2x}\ \cdot\ 3}{2}\ =\ \dfrac{2^2\ \cdot\ 3^x}{\sqrt{3}}$

$2^{2x\ -\ 3}\ =\ 3^{x\ -\ \dfrac{3}{2}}$

$2^{2x\ -\ 3}\ =\ 3^{\dfrac{2x\ -\ 3}{2}}$

Tomando $2x\ -\ 3\ \neq\ 0 \Rightarrow\ x\ \neq\ \dfrac{3}{2}$:

$\sqrt[2x\ -\ 3]{2^{2x\ -\ 3}}\ =\ \sqrt[2x\ -\ 3]{3^\dfrac{2x\ -\ 3}{2}}$

Temos:

$2\ =\ \sqrt{3}$

O que é um absurdo.

Tomando então $x\ =\ \dfrac{3}{2}$:

$2^0\ =\ 3^{\dfrac{0}{2}}$

$1\ =\ 1$

Logo $S\ =\ \{\dfrac{3}{2}\}$.

Exercício: equação exponencial #4.

Resolver em $\mathbb{R}$:

$4^x\ -\ 3^{x\ -\ \dfrac{1}{2}}\ =\ 3^{x\ +\ \dfrac{1}{2}}\ -\ 2^{2x\ -\ 1}$

____________________



Resolução:

$2^{2x}\ -\ \dfrac{3^x}{\sqrt{3}}\ =\ \sqrt{3}\ \cdot\ 3^x\ -\ \dfrac{2^{2x}}{2}$

$\dfrac{2^{2x}\ \cdot\ 3}{2}\ =\ \dfrac{2^2\ \cdot\ 3^x}{\sqrt{3}}$

$2^{2x\ -\ 3}\ =\ 3^{x\ -\ \dfrac{3}{2}}$

$2^{2x\ -\ 3}\ =\ 3^{\dfrac{2x\ -\ 3}{2}}$

Tomando $2x\ -\ 3\ \neq\ 0 \Rightarrow\ x\ \neq\ \dfrac{3}{2}$:

$\sqrt[2x\ -\ 3]{2^{2x\ -\ 3}}\ =\ \sqrt[2x\ -\ 3]{3^\dfrac{2x\ -\ 3}{2}}$

Temos:

$2\ =\ \sqrt{3}$

O que é um absurdo.

Tomando então $x\ =\ \dfrac{3}{2}$:

$2^0\ =\ 3^{\dfrac{0}{2}}$

$1\ =\ 1$

Logo $S\ =\ \{\dfrac{3}{2}\}$.

quinta-feira, 28 de junho de 2012

Construção de triângulos pitagóricos.

São aqueles retângulos para os quais vale a relação de Pitágoras $a^2 = b^2 + c^2$, sendo $a$ a hipotenusa, e $b$ e $c$ os catetos, sendo seus módulos números naturais.

Observemos que o primeiro membro da relação deve ser um quadrado perfeito. Vamos pois igualá-lo ao desenvolvimento de $(x\ +\ y)^2$, sendo $x$ e $y$ naturais, buscando uma soma de quadrados perfeitos:

$a^2\ =\ x^2\ +\ 2xy\ +\ y^2\ =\ x^2\ +\ y^2\ + 2xy\ =$

$=\ (x\ -\ y)^2\ +\ 2xy\ +\ 2xy$

$(x\ +\ y)^2\ =\ (x\ -\ y)^2\ + 4xy$

Lembrando que os naturais são fechados com relação à soma e multiplicação, $(x\ +\ y)^2$ e $(x\ -\ y)^2$ (com $x\ >\ y$) são quadrados perfeitos, mas não podemos dizer o mesmo sobre $4xy$.

Mas se tomarmos $p$ e $q$ naturais tais que $p^2\ =\ x$ e $q^2\ =\ y$, teremos:

$(p^2\ +\ q^2)^2\ =\ (p^2\ -\ q^2)^2\ + (2pq)^2$

Assim podemos construir qualquer triângulo pitagórico arbitrando dois naturais quaisquer $p$ e $q$ (com $p\ >\ q$ para $b$ ser natural).

Exemplos:

$(p,q)\ =\ (2,1)\ \Rightarrow\ (a=2^2+1^2=5)\ \wedge\ (b=2^2-1^2=3)\ \wedge$

$\wedge\ (c=2\cdot 2\cdot 1=4)$

$(p,q)\ =\ (3,1)\ \Rightarrow\ (a=3^2+1^2=10)\ \wedge\ (b=3^2-1^2=8)\ \wedge$

$\wedge\ (c=2\cdot 3\cdot 1=6)$

$(p,q)\ =\ (5,2)\ \Rightarrow\ (a=5^2+2^2=29)\ \wedge\ (b=5^2-2^2=21)\ \wedge$

$\wedge\ (c=2\cdot 5\cdot 2=20)$

____________________



Fonte auxiliar: Geometria Métrica. Guelli, Iezzi, Dolce. Editora Moderna.

Construção de triângulos pitagóricos.

São aqueles retângulos para os quais vale a relação de Pitágoras $a^2 = b^2 + c^2$, sendo $a$ a hipotenusa, e $b$ e $c$ os catetos, sendo seus módulos números naturais.

Observemos que o primeiro membro da relação deve ser um quadrado perfeito. Vamos pois igualá-lo ao desenvolvimento de $(x\ +\ y)^2$, sendo $x$ e $y$ naturais, buscando uma soma de quadrados perfeitos:

$a^2\ =\ x^2\ +\ 2xy\ +\ y^2\ =\ x^2\ +\ y^2\ + 2xy\ =$

$=\ (x\ -\ y)^2\ +\ 2xy\ +\ 2xy$

$(x\ +\ y)^2\ =\ (x\ -\ y)^2\ + 4xy$

Lembrando que os naturais são fechados com relação à soma e multiplicação, $(x\ +\ y)^2$ e $(x\ -\ y)^2$ (com $x\ >\ y$) são quadrados perfeitos, mas não podemos dizer o mesmo sobre $4xy$.

Mas se tomarmos $p$ e $q$ naturais tais que $p^2\ =\ x$ e $q^2\ =\ y$, teremos:

$(p^2\ +\ q^2)^2\ =\ (p^2\ -\ q^2)^2\ + (2pq)^2$

Assim podemos construir qualquer triângulo pitagórico arbitrando dois naturais quaisquer $p$ e $q$ (com $p\ >\ q$ para $b$ ser natural).

Exemplos:

$(p,q)\ =\ (2,1)\ \Rightarrow\ (a=2^2+1^2=5)\ \wedge\ (b=2^2-1^2=3)\ \wedge$

$\wedge\ (c=2\cdot 2\cdot 1=4)$

$(p,q)\ =\ (3,1)\ \Rightarrow\ (a=3^2+1^2=10)\ \wedge\ (b=3^2-1^2=8)\ \wedge$

$\wedge\ (c=2\cdot 3\cdot 1=6)$

$(p,q)\ =\ (5,2)\ \Rightarrow\ (a=5^2+2^2=29)\ \wedge\ (b=5^2-2^2=21)\ \wedge$

$\wedge\ (c=2\cdot 5\cdot 2=20)$

____________________



Fonte auxiliar: Geometria Métrica. Guelli, Iezzi, Dolce. Editora Moderna.

Exercício: equação exponencial.

Resolver em $\mathbb{R}$:

$3^{x^2\ +\ \dfrac{1}{x^2}}\ =\ \dfrac{81}{3^{x\ +\ \dfrac{1}{x}}}$

Igualando em potências de base $3$, temos:

$3^{x^2\ +\ \dfrac{1}{x^2}}\ =\ 3^{4\ -\ x\ -\ \dfrac{1}{x}}$

Donde:

$x^4\ +\ 1\ +\ x^3 + x =\ 4x^2$

Uma equação do quarto grau não biquadrada, o que requer métodos avançados de resolução.

Mas se observarmos que $x^2\ +\ \dfrac{1}{x^2}\ =\ (x\ +\ \dfrac{1}{x})^2\ -\ 2$, teremos:

$(x\ +\ \dfrac{1}{x})^2\ -\ 2 =\ 4\ -\ (x\ +\ \dfrac{1}{x})$

Tomando $y\ =\ x\ +\ \dfrac{1}{x}$:

$y^2\ -\ 2\ +\ y\ =\ 4$

$y^2\ +\ y\ -\ 6\ =\ 0$

Donde $y\ =\ -3\ \vee\ y\ =\ 2$.

Assim:

$-3\ =\ x\ +\ \dfrac{1}{x}$

$x^2\ +\ 3x\ +\ 1\ =\ 0$

Donde $x\ =\ \dfrac{-3\ +\ \sqrt{5}}{2}\ \vee\ x\ =\ \dfrac{-3\ -\ \sqrt{5}}{2}$.

E também:

$2\ =\ x\ +\ \dfrac{1}{x}$

$x^2\ -\ 2x\ +\ 1\ =\ 0$

Donde $x\ =\ 1$.

Logo $S\ =\ \{\dfrac{-3\ +\ \sqrt{5}}{2}\ ,\ \dfrac{-3\ -\ \sqrt{5}}{2} , 1\}$.

Exercício: equação exponencial.

Resolver em $\mathbb{R}$:

$3^{x^2\ +\ \dfrac{1}{x^2}}\ =\ \dfrac{81}{3^{x\ +\ \dfrac{1}{x}}}$

Igualando em potências de base $3$, temos:

$3^{x^2\ +\ \dfrac{1}{x^2}}\ =\ 3^{4\ -\ x\ -\ \dfrac{1}{x}}$

Donde:

$x^4\ +\ 1\ +\ x^3 + x =\ 4x^2$

Uma equação do quarto grau não biquadrada, o que requer métodos avançados de resolução.

Mas se observarmos que $x^2\ +\ \dfrac{1}{x^2}\ =\ (x\ +\ \dfrac{1}{x})^2\ -\ 2$, teremos:

$(x\ +\ \dfrac{1}{x})^2\ -\ 2 =\ 4\ -\ (x\ +\ \dfrac{1}{x})$

Tomando $y\ =\ x\ +\ \dfrac{1}{x}$:

$y^2\ -\ 2\ +\ y\ =\ 4$

$y^2\ +\ y\ -\ 6\ =\ 0$

Donde $y\ =\ -3\ \vee\ y\ =\ 2$.

Assim:

$-3\ =\ x\ +\ \dfrac{1}{x}$

$x^2\ +\ 3x\ +\ 1\ =\ 0$

Donde $x\ =\ \dfrac{-3\ +\ \sqrt{5}}{2}\ \vee\ x\ =\ \dfrac{-3\ -\ \sqrt{5}}{2}$.

E também:

$2\ =\ x\ +\ \dfrac{1}{x}$

$x^2\ -\ 2x\ +\ 1\ =\ 0$

Donde $x\ =\ 1$.

Logo $S\ =\ \{\dfrac{-3\ +\ \sqrt{5}}{2}\ ,\ \dfrac{-3\ -\ \sqrt{5}}{2} , 1\}$.

segunda-feira, 25 de junho de 2012

Velocidade de queda com resistência do ar.

Consideremos um corpo em "queda-livre", mas substanciando a resistência do ar.



Teremos agindo sobre ele a força-peso e a força de resistência aérea.

É certo que $\overrightarrow{f_a}$ depende de fatores como formato, tipo de material usado em sua confecção, seção transversal reta, entre outros. Mas de uma forma simplificada consideremos uma função linear da velocidade de queda, válida com aproximação para uma grande gama de casos: $f_a\ =\ kv$.

Sabemos que inicialmente o objeto cairá com velocidade crescente até atingir uma velocidade limite de queda, e a partir daí cairá com movimento uniforme, situação em que a aceleração será nula, por condição da resultante das forças sobre ele aplicadas ser nula.

Analisaremos a velocidade de tal objeto.

Em uma situação ideal, agirá sobre o objeto apenas o peso e a força resistente:

$P\ -\ f_a\ =\ ma$

Onde $m$ é sua massa e $a$ é sua aceleração.

Sendo $v$ sua velocidade de queda, teremos:

$mg\ -\ kv\ =\ m\dfrac{v}{t}$

$gt\ -\ \dfrac{kt}{m}v\ =\ v$

$v\ =\ \dfrac{gt}{\dfrac{kt}{m}\ +\ 1}$

Notemos que:

Quando $t\ =\ 0 $, $ v\ =\ 0$.

A velocidade-limite de queda dá-se quando $P\ =\ f_a$, ou seja:

$mg\ =\ kv\ \Rightarrow\ v\ =\ \dfrac{mg}{k}$

E a partir desta condição o valor de $\overrightarrow{v}$ não se altera.
____________________

Para $m\ =\ 1\ kg$ e $g\ =\ 10\ \dfrac{m}{s^2}$, e $k\ =\ 5\ \dfrac{N\cdot s}{m}$, teremos:



Onde $v\ =\ \dfrac{10t}{\dfrac{5t}{1}\ +\ 1}$ está em vermelho.

E $v\ =\ \dfrac{1\ \cdot\ 10}{5}\ =\ 2$ está em azul.

Velocidade de queda com resistência do ar.

Consideremos um corpo em "queda-livre", mas substanciando a resistência do ar.



Teremos agindo sobre ele a força-peso e a força de resistência aérea.

É certo que $\overrightarrow{f_a}$ depende de fatores como formato, tipo de material usado em sua confecção, seção transversal reta, entre outros. Mas de uma forma simplificada consideremos uma função linear da velocidade de queda, válida com aproximação para uma grande gama de casos: $f_a\ =\ kv$.

Sabemos que inicialmente o objeto cairá com velocidade crescente até atingir uma velocidade limite de queda, e a partir daí cairá com movimento uniforme, situação em que a aceleração será nula, por condição da resultante das forças sobre ele aplicadas ser nula.

Analisaremos a velocidade de tal objeto.

Em uma situação ideal, agirá sobre o objeto apenas o peso e a força resistente:

$P\ -\ f_a\ =\ ma$

Onde $m$ é sua massa e $a$ é sua aceleração.

Sendo $v$ sua velocidade de queda, teremos:

$mg\ -\ kv\ =\ m\dfrac{v}{t}$

$gt\ -\ \dfrac{kt}{m}v\ =\ v$

$v\ =\ \dfrac{gt}{\dfrac{kt}{m}\ +\ 1}$

Notemos que:

Quando $t\ =\ 0 $, $ v\ =\ 0$.

A velocidade-limite de queda dá-se quando $P\ =\ f_a$, ou seja:

$mg\ =\ kv\ \Rightarrow\ v\ =\ \dfrac{mg}{k}$

E a partir desta condição o valor de $\overrightarrow{v}$ não se altera.
____________________

Para $m\ =\ 1\ kg$ e $g\ =\ 10\ \dfrac{m}{s^2}$, e $k\ =\ 5\ \dfrac{N\cdot s}{m}$, teremos:



Onde $v\ =\ \dfrac{10t}{\dfrac{5t}{1}\ +\ 1}$ está em vermelho.

E $v\ =\ \dfrac{1\ \cdot\ 10}{5}\ =\ 2$ está em azul.

Função trigonométrica corda.

Consideremos o ciclo trigonométrico:



Nele já temos todas 4 funções notórias do arco $\alpha$: $\sin\ \alpha$, $\cos\ \alpha$, $\tan\ \alpha$, e $\cot\ \alpha$.

$\sec\ \alpha$ e $\csc\ \alpha$ não estão mostrados mas são os comprimentos medidos desde a origem até o eixo das tangentes e cotangentes, respectivamente.

Pensei: também temos o segmento corda quando estudamos Geometria Euclidiana.

Consideremos então uma corda traçada sob o arco $\alpha$:



O segmento destacado seria a função corda do arco $\alpha$.

Facilmente concluiríamos que:

$cord\ 0\ =\ 0$

$cord\ \dfrac{\pi}{2}\ =\ \sqrt{2}$

$cord\ \pi\ =\ 2$

$cord\ \dfrac{3\pi}{2}\ =\ \sqrt{2}$

Relacionando com as demais funções trigonométricas, teríamos:

Usando a lei dos cossenos:

$cord^2\ \alpha\ =\ 1^2\ +\ 1^2\ -\ 2\cos\ \alpha$

$cord\ \alpha\ =\ \sqrt{2(1\ -\ \cos\ \alpha)}$

Donde:

$cord\ \alpha\ =\ \sqrt{2(1\ \pm\ \sqrt{1\ -\ \sin^2\ \alpha})}$

$\cos\ \alpha\ =\ \dfrac{2\ -\ cord^2\ \alpha}{2}$

$\sin\ \alpha\ =\ \pm\ \sqrt{1\ -\ \frac{(2\ -\ cord^2\ \alpha)^2}{4}}$

Função trigonométrica corda.

Consideremos o ciclo trigonométrico:



Nele já temos todas 4 funções notórias do arco $\alpha$: $\sin\ \alpha$, $\cos\ \alpha$, $\tan\ \alpha$, e $\cot\ \alpha$.

$\sec\ \alpha$ e $\csc\ \alpha$ não estão mostrados mas são os comprimentos medidos desde a origem até o eixo das tangentes e cotangentes, respectivamente.

Pensei: também temos o segmento corda quando estudamos Geometria Euclidiana.

Consideremos então uma corda traçada sob o arco $\alpha$:



O segmento destacado seria a função corda do arco $\alpha$.

Facilmente concluiríamos que:

$cord\ 0\ =\ 0$

$cord\ \dfrac{\pi}{2}\ =\ \sqrt{2}$

$cord\ \pi\ =\ 2$

$cord\ \dfrac{3\pi}{2}\ =\ \sqrt{2}$

Relacionando com as demais funções trigonométricas, teríamos:

Usando a lei dos cossenos:

$cord^2\ \alpha\ =\ 1^2\ +\ 1^2\ -\ 2\cos\ \alpha$

$cord\ \alpha\ =\ \sqrt{2(1\ -\ \cos\ \alpha)}$

Donde:

$cord\ \alpha\ =\ \sqrt{2(1\ \pm\ \sqrt{1\ -\ \sin^2\ \alpha})}$

$\cos\ \alpha\ =\ \dfrac{2\ -\ cord^2\ \alpha}{2}$

$\sin\ \alpha\ =\ \pm\ \sqrt{1\ -\ \frac{(2\ -\ cord^2\ \alpha)^2}{4}}$

domingo, 24 de junho de 2012

Uma identidade financeira.

$(1\ +\ x)^n\ +\ x(1\ +\ x)^n\ =\ (1\ +\ x)^{n\ +\ 1}$

Estava a estudar juros compostos e li que trata-se da mesma teoria dos juros simples, mas cujo capital sobre o qual incide a taxa é atualizado a cada unidade de tempo, de forma cumulativa, de tal forma que li no livro:

Na primeira unidade de tempo teremos:

$M_1\ =\ C\ +\ iC\ =\ C(1\ +\ i)$

Na segunda unidade de tempo teremos:

$M_2\ =\ C(1\ +\ i)\ + iC(1\ +\ i)\ =\ C(1\ +\ i)^2$

Na terceira unidade de tempo teremos:

$M_3\ =\ C(1\ +\ i)^2\ + iC(1\ +\ i)^2\ =\ C(1\ +\ i)^3$

Estimando que decorridos $t$ unidades de tempo teremos: $M_t\ =\ C(1\ +\ i)^t$, Onde $i$ é a taxa de juros na unidade de tempo adotada.

Para $t\ =\ 2$ é fácil vermos que teremos um quadrado perfeito no desenvolvimento de $M_2$. Mas para $t\ >\ 2$ já achei o raciocínio demais complexo.

Quis então verificar a validade da sentença:

$(1\ +\ x)^n\ +\ x(1\ +\ x)^n\ =\ (1\ +\ x)^{n\ +\ 1}$.
____________________

Demonstração:

Por indução:

Para $n\ =\ 1$:

$1\ +\ x\ +\ x\ +\ x^2\ =\ (1\ +\ x)^2$

Supondo verdadeira a sentença:

$(1\ +\ x)^p\ +\ x(1\ +\ x)^p\ =\ (1\ +\ x)^{p\ +\ 1}$

Multiplicando ambos os membros por $1\ +\ x$:

$(1\ +\ x)^{p\ +\ 1}\ +\ x(1\ +\ x)^{p\ +\ 1}\ =\ (1\ +\ x)^{p\ +\ 2}$

Concluímos assim que a sentença é verdadeira para todo $n \geq\ 1$.

Uma identidade financeira.

$(1\ +\ x)^n\ +\ x(1\ +\ x)^n\ =\ (1\ +\ x)^{n\ +\ 1}$

Estava a estudar juros compostos e li que trata-se da mesma teoria dos juros simples, mas cujo capital sobre o qual incide a taxa é atualizado a cada unidade de tempo, de forma cumulativa, de tal forma que li no livro:

Na primeira unidade de tempo teremos:

$M_1\ =\ C\ +\ iC\ =\ C(1\ +\ i)$

Na segunda unidade de tempo teremos:

$M_2\ =\ C(1\ +\ i)\ + iC(1\ +\ i)\ =\ C(1\ +\ i)^2$

Na terceira unidade de tempo teremos:

$M_3\ =\ C(1\ +\ i)^2\ + iC(1\ +\ i)^2\ =\ C(1\ +\ i)^3$

Estimando que decorridos $t$ unidades de tempo teremos: $M_t\ =\ C(1\ +\ i)^t$, Onde $i$ é a taxa de juros na unidade de tempo adotada.

Para $t\ =\ 2$ é fácil vermos que teremos um quadrado perfeito no desenvolvimento de $M_2$. Mas para $t\ >\ 2$ já achei o raciocínio demais complexo.

Quis então verificar a validade da sentença:

$(1\ +\ x)^n\ +\ x(1\ +\ x)^n\ =\ (1\ +\ x)^{n\ +\ 1}$.
____________________

Demonstração:

Por indução:

Para $n\ =\ 1$:

$1\ +\ x\ +\ x\ +\ x^2\ =\ (1\ +\ x)^2$

Supondo verdadeira a sentença:

$(1\ +\ x)^p\ +\ x(1\ +\ x)^p\ =\ (1\ +\ x)^{p\ +\ 1}$

Multiplicando ambos os membros por $1\ +\ x$:

$(1\ +\ x)^{p\ +\ 1}\ +\ x(1\ +\ x)^{p\ +\ 1}\ =\ (1\ +\ x)^{p\ +\ 2}$

Concluímos assim que a sentença é verdadeira para todo $n \geq\ 1$.

Inflação brasileira nos anos 80.

Em 2010 a inflação brasileira foi de $5,91 \%$. Tempos de paz considerando seu passado tenebroso.

Houve um período na década de 80 em que a taxa de inflação era de $25\%$ ao mês.

Vamos calcular o quanto era ao ano.

Consideremos que $i_{am}$ seja aplicada sobre um capital $C$ e gere um montante $M$ em 1 ano:

$M\ =\ C(1\ +\ \dfrac{25}{100})^{12}$

$M\ \approx\ C\ \cdot\ 14,55$

O mesmo montante será gerado por uma taxa anual incidida sobre o mesmo capital. Logo:

$C\ \cdot\ 14,55\ \approx\ C\ \cdot\ (1\ +\ i_{aa})^1$

$i_{aa}\ \approx\ 13,55$

$i_{aa}\ \approx\ 1355\ \%$

Uma taxa aproximadamente $\dfrac{1355}{5,91}\ \approx\ 22927\ \%$ maior que a de 2010.

Inflação brasileira nos anos 80.

Em 2010 a inflação brasileira foi de $5,91 \%$. Tempos de paz considerando seu passado tenebroso.

Houve um período na década de 80 em que a taxa de inflação era de $25\%$ ao mês.

Vamos calcular o quanto era ao ano.

Consideremos que $i_{am}$ seja aplicada sobre um capital $C$ e gere um montante $M$ em 1 ano:

$M\ =\ C(1\ +\ \dfrac{25}{100})^{12}$

$M\ \approx\ C\ \cdot\ 14,55$

O mesmo montante será gerado por uma taxa anual incidida sobre o mesmo capital. Logo:

$C\ \cdot\ 14,55\ \approx\ C\ \cdot\ (1\ +\ i_{aa})^1$

$i_{aa}\ \approx\ 13,55$

$i_{aa}\ \approx\ 1355\ \%$

Uma taxa aproximadamente $\dfrac{1355}{5,91}\ \approx\ 22927\ \%$ maior que a de 2010.

sábado, 23 de junho de 2012

O perigo de quadrar uma equação.

Se $a\ =\ b$ podemos concluir que $a^2\ =\ b^2$. Mas esta última condição adiciona a proposição $a\ =\ -b$ como verdadeira.

Logo, quando quadramos uma equação, devemos ter o cuidado de verificar as raízes na equação original. Pois ao quadrar adicionamos raízes.

Eis um exemplo:

$x\ =\ 2x\ -\ 3$

Para ela temos $S\ =\ \{3\}$

Quadrando teremos:

$x^2\ =\ 4x^2\ -\ 12x\ + 9$

$x^2\ -\ 4x\ +\ 3\ =\ 0$

Donde $x\ =\ 3$ ou $x\ =\ 1$. Onde este último valor não satisfaz $x\ =\ 2x\ -\ 3$.

O perigo de quadrar uma equação.

Se $a\ =\ b$ podemos concluir que $a^2\ =\ b^2$. Mas esta última condição adiciona a proposição $a\ =\ -b$ como verdadeira.

Logo, quando quadramos uma equação, devemos ter o cuidado de verificar as raízes na equação original. Pois ao quadrar adicionamos raízes.

Eis um exemplo:

$x\ =\ 2x\ -\ 3$

Para ela temos $S\ =\ \{3\}$

Quadrando teremos:

$x^2\ =\ 4x^2\ -\ 12x\ + 9$

$x^2\ -\ 4x\ +\ 3\ =\ 0$

Donde $x\ =\ 3$ ou $x\ =\ 1$. Onde este último valor não satisfaz $x\ =\ 2x\ -\ 3$.

sexta-feira, 22 de junho de 2012

Teorema: $mmc(a,b,c)=mmc(mmc(a,b),c)$.

$mmc\ (a\ ,\ b\ ,\ c)\ =\ mmc\ (mmc\ (a\ ,\ b)\ ,\ c)$
____________________

Demonstração:
_____

Lema: Transitividade da divisibilidade:

Se $a$ é divisível por $b$, e $b$ divisível por $c$, então $a$ é divisível por $c$.

Demonstração:

Se $a$ é divisível por $b$, então existe um $k$ inteiro tal que $a\ =\ kb$.

Se $b$ é divisível por $c$, então existe um $p$ inteiro tal que $b\ =\ pc$.

Assim $a\ =\ kpc$.

Como o produto $kp$ também é inteiro, concluímos que $a$ é divisível por $c$.
_____

Chamemos $m\ =\ mmc\ (a\ ,\ b\ ,\ c)$ de sentença $p$.

Teremos as sentenças:

$q$: $m$ é divisível por $a$.
$r$: $m$ é divisível por $b$.
$s$: $m$ é divisível por $c$.
$t$: $m$ é mínimo sob suas condições.

Tal que:

$p\ \Rightarrow\ (q\ \wedge\ r\ \wedge\ s)\ \wedge\ t$

Chamemos agora $m_1\ =\ mmc\ (a\ ,\ b)$ de sentença $p_1$.

Teremos as sentenças:

$q_1$: $m_1$ é divisível por $a$.
$r_1$: $m_1$ é divisível por $b$.
$t_1$: $m_1$ é mínimo sob suas condições.

Tal que:

$p_1\ \Rightarrow\ (q_1\ \wedge\ r_1)\ \wedge\ t_1$

Chamemos agora $m_2\ =\ mmc\ (m_1\ ,\ c)$ de sentença $p_2$.

Teremos as sentenças:

$q_2$: $m_2$ é divisível por $m_1$.
$r_2$: $m_2$ é divisível por $c$.
$t_2$: $m_2$ é mínimo sob suas condições.

Tal que:

$p_2\ \Rightarrow\ (q_2\ \wedge\ r_2)\ \wedge\ t_2$

Notemos que, usando o lema da transitividade da divisibilidade:

$q_2\ \rightarrow\ (a\ |\ m_2)\ \wedge\ (b\ |\ m_2)$ é uma tautologia. Chamemos esta de $T$.

$(T\ \wedge\ r_2)\ \wedge\ t_2\ \Rightarrow\ m_2\ =\ m$

Como queríamos demonstrar.

Teorema: $mmc(a,b,c)=mmc(mmc(a,b),c)$.

$mmc\ (a\ ,\ b\ ,\ c)\ =\ mmc\ (mmc\ (a\ ,\ b)\ ,\ c)$
____________________

Demonstração:
_____

Lema: Transitividade da divisibilidade:

Se $a$ é divisível por $b$, e $b$ divisível por $c$, então $a$ é divisível por $c$.

Demonstração:

Se $a$ é divisível por $b$, então existe um $k$ inteiro tal que $a\ =\ kb$.

Se $b$ é divisível por $c$, então existe um $p$ inteiro tal que $b\ =\ pc$.

Assim $a\ =\ kpc$.

Como o produto $kp$ também é inteiro, concluímos que $a$ é divisível por $c$.
_____

Chamemos $m\ =\ mmc\ (a\ ,\ b\ ,\ c)$ de sentença $p$.

Teremos as sentenças:

$q$: $m$ é divisível por $a$.
$r$: $m$ é divisível por $b$.
$s$: $m$ é divisível por $c$.
$t$: $m$ é mínimo sob suas condições.

Tal que:

$p\ \Rightarrow\ (q\ \wedge\ r\ \wedge\ s)\ \wedge\ t$

Chamemos agora $m_1\ =\ mmc\ (a\ ,\ b)$ de sentença $p_1$.

Teremos as sentenças:

$q_1$: $m_1$ é divisível por $a$.
$r_1$: $m_1$ é divisível por $b$.
$t_1$: $m_1$ é mínimo sob suas condições.

Tal que:

$p_1\ \Rightarrow\ (q_1\ \wedge\ r_1)\ \wedge\ t_1$

Chamemos agora $m_2\ =\ mmc\ (m_1\ ,\ c)$ de sentença $p_2$.

Teremos as sentenças:

$q_2$: $m_2$ é divisível por $m_1$.
$r_2$: $m_2$ é divisível por $c$.
$t_2$: $m_2$ é mínimo sob suas condições.

Tal que:

$p_2\ \Rightarrow\ (q_2\ \wedge\ r_2)\ \wedge\ t_2$

Notemos que, usando o lema da transitividade da divisibilidade:

$q_2\ \rightarrow\ (a\ |\ m_2)\ \wedge\ (b\ |\ m_2)$ é uma tautologia. Chamemos esta de $T$.

$(T\ \wedge\ r_2)\ \wedge\ t_2\ \Rightarrow\ m_2\ =\ m$

Como queríamos demonstrar.