O tempo $t$ necessário para o deslocamento horizontal será o mesmo para o deslocamento vertical.
Tomando por convenção o sinal positivo para o deslocamento para cima, verticalmente o objeto deve atingir o espaço $- A \sin \phi$.
Estudando o movimento vertical:
$- A \sin \phi\ =\ (V_0 \sin \theta)t\ +\ \dfrac{g}{2}t^2$
$t\ =\ \dfrac{- V_0 \sin \theta\ +\ \sqrt{{V_0}^2 \sin^2 \theta\ -\ 2gA \sin \phi}}{g}$
Estudando o movimento horizontal:
$A \cos \phi\ =\ (V_0 \cos \theta)t$
Substituindo $t$ na conclusão vertical:
$\dfrac{A \cos \phi}{V_0 \cos \theta}\ =\ \dfrac{- V_0 \sin \theta\ +\ \sqrt{{V_0}^2 \sin^2 \theta\ -\ 2gA \sin \phi}}{g}$
${V_0}^2 \sin^2 \theta\ -\ 2gA \sin \phi\ =\ \left(g \dfrac{A \cos \phi}{V_0 \cos \theta}\ +\ V_0 \sin \theta\right)^2$
$\left(\dfrac{g^2 \cos^2 \phi}{{V_0}^2 \cos^2 \theta}\right) A^2\ +\ 2g [(\sin \phi)\ +\ (\cos \phi)(\tan \theta)] A\ =\ 0$
$A\ =\ \dfrac{2{V_0}^2 (\cos \phi)(\sin \theta)(\cos \theta)\ +\ 2{V_0}^2 (\cos^2 \theta) (\sin \phi)}{g \cos^2 \phi}\ =$
$=\ \dfrac{2{V_0}^2 (\sin \theta)(\cos \theta)}{g \cos \phi}\ +\ \dfrac{2{V_0}^2 (\cos^2 \theta)(\tan \phi)}{g \cos \phi}\ =$
$=\ \fbox{$\dfrac{2{V_0}^2 \cos \theta}{g \cos \phi} [(\sin \theta)\ +\ (\cos \theta)(\tan \phi)]$}$
Nenhum comentário:
Postar um comentário