$x^4 < x^4 + 1\ \Rightarrow\ \dfrac{1}{x^4 + 1} < \dfrac{1}{x^4}\ \overset{x \ge 1}{\Rightarrow}\ 0 < \dfrac{x}{x^4 + 1} < \dfrac{1}{x^3}$
Como $\displaystyle\int_1^{+\infty} \dfrac{dx}{x^3}$ converge, pelo critério da comparação, $\displaystyle\int_1^{+\infty} \dfrac{x}{x^4 + 1}\ dx$ é convergente.
Quod Erat Demonstrandum.
Nenhum comentário:
Postar um comentário