$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 29-09-2024.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

terça-feira, 5 de abril de 2022

Comprimento de uma curva dada por coordenadas paramétricas.

Sejam $f(t)$ e $g(t)$ duas funções diferenciáveis no intervalo $(a, b)$, chamando de $C$ o comprimento da curva $\begin{cases}x = f(t)\\ y = g(t)\end{cases}$ quando $t$ varia de $a$ a $b$:

 

$C = \displaystyle\lim_{N \rightarrow 0} \displaystyle\sum \sqrt{\left[f(t_{i+1}) - f(t_i)\right]^2 + \left[g(t_{i+1}) - g(t_i)\right]^2}$


Sejam $t_{k_1}$ e $t_{k_2}$ tais que que $t_i \le t_{k_1} \le t_{i+1}$ e $t_i \le t_{k_2} \le t_{i+1}$, pelo TVM (Teorema do Valor Médio):

$C = \displaystyle\lim_{N \rightarrow 0} \displaystyle\sum \sqrt{\left[f'(t_{k_1})\right]^2 + \left[g'(t_{k_2})\right]^2} (t_{i+1} - t_i)$


Logo, pela definição de integral:


$\fbox{$C = \displaystyle\int_a^b \sqrt{\left[f'(t)\right]^2 + \left[g'(t)\right]^2}\ dt$}$


Exemplo: sejam $f(t) = \cos t$, $g(t) = \sin t$, $a = 0$ e $b = 2\pi$ (o ciclo trigonométrico):


$C = \displaystyle\int_0^{2\pi} \sqrt{\sin^2 t + \cos^2 t}\ dt = \left.t\right|_0^{2\pi} = 2\pi$.

Nenhum comentário:

Postar um comentário