$C = \displaystyle\int_0^{2\pi} \sqrt{(\cos \theta - \theta\sin \theta)^2 + (\sin \theta + \theta\cos \theta)^2}\ d\theta = \displaystyle\int_0^{2\pi} \sqrt{1 + \theta^2}\ d\theta$
Seja $\theta = \tan \varphi$, $d\theta = \sec^2 \varphi\ d\varphi$.
$C = \displaystyle\int_0^{\arctan 2\pi} \sec^3 \varphi\ d\varphi = \fbox{$\dfrac{2\pi\sqrt{4\pi^2 + 1} + \log\left(2\pi + \sqrt{4\pi^2 + 1}\right)}{2}$}$
Nenhum comentário:
Postar um comentário