Seja $f$ contínua em $x$:
$\displaystyle\lim_{h \rightarrow 0} \dfrac{\dfrac{1}{x + h} - \dfrac{1}{x}}{h} = \displaystyle\lim_{h \rightarrow 0} \dfrac{x - x - h}{xh(x + h)} = \displaystyle\lim_{h \rightarrow 0} \dfrac{-1}{x^2 + xh} = -\dfrac{1}{x^2}$.
Quod Erat Demonstrandum.
Nenhum comentário:
Postar um comentário