Seja um ponto percorrendo $\begin{cases}x = x_0 + abv_x t\\ y = x_0 + abv_y t\end{cases}$, com $t \ge 0$, tal que, após executar
$\begin{cases}b\ \text{recebe}\ 1\text{.}\\ \text{Se}\ v_x \ge 0,\ \text{então}\ a\ \text{recebe}\ 1,\ \text{senão}\ a\ \text{recebe}\ -1\text{.}\end{cases}$,
para cada acréscimo infinitesimal em $t$, o algoritmo seguinte é executado:
$\begin{cases}\theta\ \text{recebe}\ \arctan \dfrac{u(t)\ dt}{\sqrt{v_x^2 + v_y^2}} + \arctan \dfrac{v_y}{v_x}\text{.}\end{cases}$
$\begin{cases}\text{Se}\ |\theta| > \dfrac{\pi}{2},\ \text{então}\ b\ \text{recebe}\ -b\text{.}\end{cases}$
$\begin{cases}V_x\ \text{recebe}\ \sqrt{v_x^2 + v_y^2 + [u(t)\ dt]^2} \cdot \cos \theta\text{.} \\ V_y\ \text{recebe}\ \sqrt{v_x^2 + v_y^2 + [u(t)\ dt]^2} \cdot \sin \theta\text{.}\end{cases}$
$\begin{cases}v_x\ \text{recebe}\ V_x\text{.}\\ v_y\ \text{recebe}\ V_y\text{.}\end{cases}$.
Tal ponto descreverá uma chamada Curva Dirigida de Antonio Vandré. A função $u(t)$ é chamada Função Característica da Curva Dirigida de Antonio Vandré.
Nenhum comentário:
Postar um comentário