Seja ${\small V = \{(a_i, b_i) \in \mathbb{R}^2\ :\ (a_k, b_k) + (a_\ell, b_\ell) = (a_k a_\ell, b_k b_\ell)\ \wedge\ \alpha(a_k, b_k) = (\alpha a_k, \alpha b_k),\ \alpha\ \text{escalar}\}}$. Mostrar que $V$ não é espaço vetorial.
Basta mostrar que ao menos um elemento de $V$ não obedece a uma propriedade que caracteriza espaços vetoriais.
Sejam $\beta$ e $\gamma$ escalares:
$\beta (a_1, b_1) + \gamma (a_1, b_1) = (\beta a_1, \beta b_1) + (\gamma a_1, \gamma b_1) = (\beta \gamma a_1^2, \beta \gamma b_1^2) \neq (\beta + \gamma) (a_1, b_1)$.
Quod Erat Demonstandum.
Nenhum comentário:
Postar um comentário