Seja uma aplicação linear $L: \mathbb{R}^n \rightarrow \mathbb{R}$. Seja $S$ o conjunto de todos os elementos $s$ de $\mathbb{R}^n$ tais que $L(s) \ge 0$. Mostrar que $S$ é convexo.
Basta mostrar que $L (tA + (1 - t)B) \ge 0$, com $A$ e $B$ pertencentes a $S$, e $t$ real com $0 \le t \le 1$.
$L(A) \ge 0\ \wedge\ L(B) \ge 0\ \Rightarrow\ tL(A) \ge 0\ \wedge\ (1-t)L(B) \ge 0\ \Rightarrow$
$\Rightarrow\ tL(A) + (1 - t)L(B) \ge 0\ \Rightarrow\ L(tA + (1 - t)B) \ge 0$.
Quod Erat Demonstrandum.
Nenhum comentário:
Postar um comentário