$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 29-09-2024.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

sábado, 1 de fevereiro de 2020

Exercício: representação de uma função em série.

Encontre a representação em série e o intervalo de convergência de $f(x) = \dfrac{1}{(1 + x)^3}$.

Resolução:

Primeiramente vamos obter uma expressão da série geométrica, com a qual sabemos trabalhar; para isto, vamos integrar $f(x)$ duas vezes:

$\int \int \dfrac{1}{(1 + x)^3}\ dx\ dx\ =\ \int (-\dfrac{1}{2(1 + x)^2} + c_1)\ dx\ =$

$=\ \dfrac{1}{2(1 + x)} + c_1x + c_2\ =\ \dfrac{1}{2}[\sum_{n=0}^\infty (-1)^n x^n]\ +\ c_1x +\ c_2$, $|x| < 1$

Como houveram duas integrações, vamos derivar duas vezes afim de obter uma expressão para $f(x)$:

$f'(x) = \dfrac{1}{2} \sum_{n=1}^\infty (-1)^n n x^{n-1} + c_1$

$f(x) = \dfrac{1}{2} \sum_{n=2}^\infty (-1)^n n(n - 1) x^{n-2}$

Fazendo uma reindexação:

$\fbox{$\dfrac{1}{(1 + x)^3} = \sum_{n=0}^\infty \dfrac{(-1)^n (n + 2)(n + 1) x^{n}}{2}$, $-1 < x < 1$}$

Nenhum comentário:

Postar um comentário