Por se tratar de uma integral que aparece muitas vezes, quase classificada como "notável", principalmente após substituições trigonométricas, é bom já a ter previamente calculada em mente, é o que vamos fazer.
$\int \sec^3 x\ dx\ =\ \int (\sec^2 x)(\sec x)\ dx\ =$
$=\ (\sec x)(\tan x)\ -\ \int (\tan^2 x)(\sec x)\ dx\ =$
$=\ (\sec x)(\tan x)\ -\ \int (\sec^2 x\ -\ 1)(\sec x)\ dx\ =$
$=\ (\sec x)(\tan x)\ -\ \int \sec^3 x\ dx\ +\ \int \sec x\ dx$
Logo $\fbox{$\int \sec^3 x\ dx\ =\ \dfrac{(\sec x)(\tan x)\ +\ \ln |\sec x\ +\ \tan x|}{2}\ +\ C$}$.
Organização sem fins lucrativos, voltada para a pesquisa e educação em Matemática.
Última atualização estrutural do weblog: 29-09-2024.
Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.
Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.
Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.
Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.
Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.
Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.
Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.
Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.
Nenhum comentário:
Postar um comentário