$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 07-07-2023.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

quinta-feira, 20 de fevereiro de 2020

Volume da esfera.

Para tal fim, vamos utilizar, do Cálculo, o método dos discos.

Consideremos a função $y = f(x) = \sqrt{r^2 - x^2},\ r > 0$.


Girando seu gráfico em torno do eixo $x$, teremos uma esfera de raio $r$.


Seu volume será calculado pela fórmula:

$V\ =\ \pi\int_{-r}^r [f(x)]^2\ dx$

$V\ =\ \pi\int_{-r}^r (r^2 - x^2)\ dx\ =\ \pi (r^2 x - \dfrac{x^3}{3})\mid_{-r}^r\ =$

$=\ \pi(r^3 - \dfrac{r^3}{3} + r^3 - \dfrac{r^3}{3})\ =\ \fbox{$\dfrac{4\pi r^3}{3}$}$

Nenhum comentário:

Postar um comentário