$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 29-09-2024.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

quinta-feira, 1 de agosto de 2019

Exercício: área total de um cone.

A superfície lateral planificada de um cone de revolução é um setor circular de raio $9\ dm$ e de ângulo central de $\dfrac{10\pi}{9}$ radianos. Qual a área total do cone?

Chamemos de $g$ a geratriz do cone e $r$ o raio de sua base.

$g = 9$

$\dfrac{10\cancel{\pi}}{\cancel{9}} = \dfrac{2\cancel{\pi} r}{\cancel{g}}\ \Rightarrow\ r = 5$

$A_t = \pi r(r + g) = \fbox{$70\pi\ dm^2$}$

Nenhum comentário:

Postar um comentário