$\begin{cases}x = 2\cos t\\ y = 3\sin t\end{cases}$, em que $t \in \mathbb{R}$.
a) Obtenha uma equação desse gráfico, relacionando apenas as variáveis $x$ e $y$.
b) Esboce o gráfico.
Resolução:
a) $\begin{cases}x = 2\cos t\\ y = 3\sin t\end{cases}\ \Rightarrow\ \begin{cases}3x = 6\cos t\\ 2y = 6\sin t\end{cases}\ \Rightarrow\ \begin{cases}9x^2 = 36\cos^2 t\\ 4y^2 = 36\sin^2 t\end{cases}$
Somando as duas equações:
$9x^2 + 4y^2 = 36(\sin^2 t + \cos^2 t)\ \Rightarrow\ 9x^2 + 4y^2 = 36\ \Rightarrow$
$\Rightarrow\ \dfrac{9x^2}{36} + \dfrac{4y^2}{36} = 1\ \therefore\ \fbox{$\dfrac{x^2}{4} + \dfrac{y^2}{9} = 1$}$
b) Trata-se portanto de uma elipse de centro $(0, 0)$, eixo maior paralelo ao eixo das ordenadas, semi-eixo maior $a = 3$ e semi-eixo menor $b = 2$:
Nenhum comentário:
Postar um comentário