$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 07-07-2023.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

domingo, 25 de agosto de 2019

Exercício: pirâmide cortada em volumes iguais.

Uma pirâmide regular tem altura $6$ e a medida do lado da base quadrada igual a $4$. Ela deve ser cortada por um plano paralelo à base, a uma distância $d$ dessa base, de forma a determinar dois sólidos de mesmo volume. Qual deve ser a distância $d$?

Resolução:

Como a razão entre os volumes da pirâmide original e a cortada pelo plano é $2$, a razão de semelhança entre as duas deve ser $\sqrt[3]{2}$. Assim:

$\dfrac{6}{6 - d} = \sqrt[3]{2}$

$6 - d = \dfrac{6}{\sqrt[3]{2}} = \dfrac{6\sqrt[3]{4}}{2} = 3\sqrt[3]{4}$

$\fbox{$d = 6 - 3\sqrt[3]{4}$}$

Nenhum comentário:

Postar um comentário