$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 07-07-2023.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

domingo, 16 de janeiro de 2022

Determinar o valor de $a$ sabendo que o resto da divisão de $P(x) = 8x^3 + ax^2 - 11x + 5$ por $x - 5$ é $1050$.

$P(5) = 1050\ \Rightarrow\ 8 \cdot 125 + a \cdot 25 - 11 \cdot 5 + 5 = 1050\ \Rightarrow\ \fbox{$a = 4$}$

Qual a soma dos coeficientes de um polinômio do terceiro grau sabendo que é divisível por $x - 1$?

Seja $P(x) = ax^3 + bx^2 + cx + d$ tal polinômio.

Se ele é divisível por $x - 1$, $P(1) = 0$. Logo:

$\fbox{$a + b + c + d = 0$}$.

Calculadora: ponto simétrico a uma reta.

Entre com os argumentos, separados por barra vertical "|": primeiro: o ponto com abscissa separada da ordenada por ponto e vírgula ";"; segundo: os coeficientes $a$, $b$ e $c$ da reta $ax + by + c = 0$, separados por ponto e vírgula ";":

Exemplo:

Input: "0; 3 | -1; 1; 0". Output: "3, 0".




Ponto simétrico à reta:

Novas coordenadas cartesianas para uma rotação do eixo $Ox$.

${\large (x_r, y_r) = \left(\dfrac{x}{\cos \theta}, y - x\tan \theta\right)}$

sábado, 15 de janeiro de 2022

Se $n$ pessoas se encontram, e cada uma aperta $1$ vez a mão de cada outra, quantos apertos de mão haverá?

$\displaystyle{n \choose 2} = \dfrac{n!}{2!(n - 2)!}\ =\ \fbox{$\dfrac{n(n - 1)}{2}$}$

Meme: "Mais um dia sem precisar de Matemática...".


 

Duas formas de encontrar $I = \displaystyle\int (\sin x)(\cos x)\ dx$.

Primeira:

$I = \dfrac{1}{2}\displaystyle\int \sin (2x)\ dx = -\dfrac{\cos(2x)}{4} + c$

Segunda:

Seja $u = \sin x$, $du = \cos x\ dx$.

$I = \displaystyle\int u\ du = \dfrac{u^2}{2} + C = \dfrac{\sin^2 x}{2} + C$

Observemos que $-\dfrac{\cos(2x)}{4} - \dfrac{\sin^2 x}{2} = -\dfrac{1}{4}$, que é constante. Logo as duas respostas estão corretas, pois tratam-se de integrais indefinidas.

Seja $V$ o espaço vetorial das matrizes quadradas $n\ x\ n$, $U$ o subespaço das matrizes simétricas e $W$ o subespaço das matrizes antissimétricas, $V = U \oplus W$.

$M \in U\ \Rightarrow\ M = M^t$

$M \in W\ \Rightarrow\ M = -M^t$

Seja $A \in V$, $A = \dfrac{1}{2}(A + A^t) + \dfrac{1}{2}(A - A^t)\ {\large (I)}$.

$(A + A^t)^t = A^t + A\ \Rightarrow\ (A + A^t) \in U\ {\large (II)}$

$(A - A^t)^t = -(A - A^t)\ \Rightarrow\ (A - A^t) \in W\ {\large (III)}$

${\large (I)}\ \wedge\ {\large (II)}\ \wedge\ {\large (III)}\ \Rightarrow\ V = U + W\ {\large (IV)}$

Seja $M \in U\ \wedge\ M \in W$:

$M = M^t\ \wedge\ -M = M^t\ \Rightarrow\ M = -M\ \Rightarrow\ M = O\ \Rightarrow\ U \cap W = \{O\}\ {\large (V)}$.

${\large (IV)}\ \wedge\ {\large (V)}\ \Rightarrow\ V = U \oplus W$

Quod Erat Demonstrandum.

sexta-feira, 14 de janeiro de 2022

Pensamento: "Não engolir Matemática, e sim saborear...".

 


Os lados de um triângulo medem $5\ cm$, $7\ cm$ e $8\ cm$. Qual a medida da mediana relativa ao maior lado?

Seja $\theta$ o ângulo adjacente aos lados de medida $5$ e $8$:

$49 = 25 + 64 - 80\cos \theta\ \therefore\ \theta = \arccos \dfrac{1}{2}$.

Seja $m$ a medida da mediana relativa ao maior lado:

$m^2 = 25 + 16 - 40 \cdot \dfrac{1}{2}\ \therefore\ \fbox{$m = \sqrt{21}\ cm$}$.

A sequência $\left(\dfrac{\sqrt{2} + 1}{2}, a, \dfrac{\sqrt{2} - 1}{2}\right)$ é uma PG. Qual o valor de $a$?

Resolução:

$a = \pm\sqrt{\dfrac{\sqrt{2} + 1}{2} \cdot \dfrac{\sqrt{2} - 1}{2}} = \pm\sqrt{\dfrac{1}{4}} = \fbox{$\pm\dfrac{1}{2}$}$

Encontrar o ângulo inscrito $\alpha$.

Seja $O$ o centro da circunferência.

$m(A\hat{O}B) = 180^o - 48^o = 132^o$

$\alpha = m(A\hat{Q}B) = \dfrac{360^o - m(A\hat{O}B)}{2} = \dfrac{228^o}{2}$

$\fbox{$\alpha = 114^o$}$

Meme: poderia estar roubando ou me drogando, mas estou escrevendo Matemática.

 


Resolver a equação $x + \dfrac{2x}{3} + \dfrac{4x}{9} + \dots = 18$.

$x\underbrace{\left[\displaystyle\sum_{i=0}^{+\infty} \left(\dfrac{2}{3}\right)^i\right]}_{(1 - 2/3)^{-1}} = 18\ \Rightarrow\ 3x = 18$

$S = \{6\}$

Se $A'_{k,p}$ é o número de arranjos com repetição de $k$ elementos tomados $p$ a $p$, resolver as equações $A'_{k,2} = 121$ e $A'_{5,k'} = 625$.

$k^2 = 121\ \Rightarrow\ k = 11$

$5^{k'} = 625\ \Rightarrow\ k' = \log_5 625 = 4$

$U = \{(a, b, c)\ :\ a = b = c\}$ e $W = \{(0, b, c)\}$, $\mathbb{R}^3 = U \oplus W$.

$\{(0, 0, 0)\} = U \cap W\ {\large (I)}$

Seja $(a, b, c)$ um vetor do $\mathbb{R}^3$:

$(a, b, c) = (a, a, a) + (0, b - a, c - a)\ \Rightarrow\ \mathbb{R}^3 = U + W\ {\large (II)}$.

${\large (I)}\ \wedge\ {\large (II)}\ \Rightarrow\ \mathbb{R}^3 = U \oplus W$

Quod Erat Demonstrandum.

quinta-feira, 13 de janeiro de 2022

Alguns senos e cossenos de nx.

$\sin (2x)=2\,\cos x\,\sin x$

$\cos (2x)=\cos ^2x-\sin ^2x$

$\sin (3x)=3\,\cos ^2x\,\sin x-\sin ^3x$

$\cos (3x)=\cos ^3x-3\,\cos x\,\sin ^2x$

$\sin (4x)=4\,\cos ^3x\,\sin x-4\,\cos x\,\sin ^3x$

$\cos (4x)=\sin ^4x-6\,\cos ^2x\,\sin ^2x+\cos ^4x$

$\sin (5x)=\sin ^5x-10\,\cos ^2x\,\sin ^3x+5\,\cos ^4x\,\sin x$

$\cos (5x)=5\,\cos x\,\sin ^4x-10\,\cos ^3x\,\sin ^2x+\cos ^5x$

$\sin (6x)=6\,\cos x\,\sin ^5x-20\,\cos ^3x\,\sin ^3x+6\,\cos ^5x\,\sin x$

$\cos (6x)=-\sin ^6x+15\,\cos ^2x\,\sin ^4x-15\,\cos ^4x\,\sin ^2x+\cos ^6x$

$\sin (7x)=-\sin ^7x+21\,\cos ^2x\,\sin ^5x-35\,\cos ^4x\,\sin ^3x+7\,\cos ^6x\,\sin x$

$\cos (7x)=-7\,\cos x\,\sin ^6x+35\,\cos ^3x\,\sin ^4x-21\,\cos ^5x\,\sin ^2x+\cos ^7x$

$\sin (8x)=-8\,\cos x\,\sin ^7x+56\,\cos ^3x\,\sin ^5x-56\,\cos ^5x\,\sin ^3x+8\,\cos ^7x\,\sin x$

$\cos (8x)=\sin ^8x-28\,\cos ^2x\,\sin ^6x+70\,\cos ^4x\,\sin ^4x-28\,\cos ^6x\,\sin ^2x+\cos ^8x$

$\sin (9x)=\sin ^9x-36\,\cos ^2x\,\sin ^7x+126\,\cos ^4x\,\sin ^5x-84\,\cos ^6x\,\sin ^3x+9\,\cos ^8x\,\sin x$

$\cos (9x)=9\,\cos x\,\sin ^8x-84\,\cos ^3x\,\sin ^6x+126\,\cos ^5x\,\sin ^4x-36\,\cos ^7x\,\sin ^2x+\cos ^9x$

${\small \sin (10x)=10\,\cos x\,\sin ^9x-120\,\cos ^3x\,\sin ^7x+252\,\cos ^5x\,\sin ^5x-120\,\cos ^7x\,\sin ^3x+10\,\cos ^9x\,\sin x}$

${\small \cos (10x)=-\sin ^{10}x+45\,\cos ^2x\,\sin ^8x-210\,\cos ^4x\,\sin ^6x+210\,\cos ^6x\,\sin ^4x-45\,\cos ^8x\,\sin ^2x+\cos ^{10}x}$

${\scriptsize \sin (11x)=-\sin ^{11}x+55\,\cos ^2x\,\sin ^9x-330\,\cos ^4x\,\sin ^7x+462\,\cos ^6x\,\sin ^5x-165\,\cos ^8x\,\sin ^3x+11\,\cos ^{10}x\,\sin x}$

${\scriptsize \cos (11x)=-11\,\cos x\,\sin ^{10}x+165\,\cos ^3x\,\sin ^8x-462\,\cos ^5x\,\sin ^6x+330\,\cos ^7x\,\sin ^4x-55\,\cos ^9x\,\sin ^2x+\cos ^{11}x}$

${\tiny \sin (12x)=-12\,\cos x\,\sin ^{11}x+220\,\cos ^3x\,\sin ^9x-792\,\cos ^5x\,\sin ^7x+792\,\cos ^7x\,\sin ^5x-220\,\cos ^9x\,\sin ^3x+12\,\cos ^{11}x\,\sin x}$

${\tiny \cos (12x)=\sin ^{12}x-66\,\cos ^2x\,\sin ^{10}x+495\,\cos ^4x\,\sin ^8x-924\,\cos ^6x\,\sin ^6x+495\,\cos ^8x\,\sin ^4x-66\,\cos ^{10}x\,\sin ^2x+\cos ^{12}x}$

${\tiny \sin (13x)=\sin ^{13}x-78\,\cos ^2x\,\sin ^{11}x+715\,\cos ^4x\,\sin ^9x-1716\,\cos ^6x\,\sin ^7x+1287\,\cos ^8x\,\sin ^5x-286\,\cos ^{10}x\,\sin ^3x+13\,\cos ^{12}x\,\sin x}$

${\tiny \cos (13x)=13\,\cos x\,\sin ^{12}x-286\,\cos ^3x\,\sin ^{10}x+1287\,\cos ^5x\,\sin ^8x-1716\,\cos ^7x\,\sin ^6x+715\,\cos ^9x\,\sin ^4x-78\,\cos ^{11}x\,\sin ^2x+\cos ^{13}x}$

${\tiny \sin (14x)=14\,\cos x\,\sin ^{13}x-364\,\cos ^3x\,\sin ^{11}x+2002\,\cos ^5x\,\sin ^9x-3432\,\cos ^7x\,\sin ^7x+2002\,\cos ^9x\,\sin ^5x-364\,\cos ^{11}x\,\sin ^3x+14\,\cos ^{13}x\,\sin x}$

${\tiny \cos (14x)=-\sin ^{14}x+91\,\cos ^2x\,\sin ^{12}x-1001\,\cos ^4x\,\sin ^{10}x+3003\,\cos ^6x\,\sin ^8x-3003\,\cos ^8x\,\sin ^6x+1001\,\cos ^{10}x\,\sin ^4x-91\,\cos ^{12}x\,\sin ^2x+\cos ^{14}x}$

${\tiny \sin (15x)=-\sin ^{15}x+105\,\cos ^2x\,\sin ^{13}x-1365\,\cos ^4x\,\sin ^{11}x+5005\,\cos ^6x\,\sin ^9x-6435\,\cos ^8x\,\sin ^7x+3003\,\cos ^{10}x\,\sin ^5x-455\,\cos ^{12}x\,\sin ^3x+15\,\cos ^{14}x\,\sin x}$

${\tiny \cos (15x)=-15\,\cos x\,\sin ^{14}x+455\,\cos ^3x\,\sin ^{12}x-3003\,\cos ^5x\,\sin ^{10}x+6435\,\cos ^7x\,\sin ^8x-5005\,\cos ^9x\,\sin ^6x+1365\,\cos ^{11}x\,\sin ^4x-105\,\cos ^{13}x\,\sin ^2x+\cos ^{15}x}$

Meme: 0,999... = 1.




 

Alguns valores precisos de senos e cossenos.

$\sin \frac{\pi}{2}=1$

$\cos \frac{\pi}{2}=0$

$\sin \frac{\pi}{4}={{1}\over{\sqrt{2}}}$

$\cos \frac{\pi}{4}={{1}\over{\sqrt{2}}}$

$\sin \frac{\pi}{8}={{\sqrt{\sqrt{2}-1}}\over{2^{{{3}\over{4}}}}}$

$\cos \frac{\pi}{8}={{\sqrt{\sqrt{2}+1}}\over{2^{{{3}\over{4}}}}}$

$\sin \frac{\pi}{16}={{\sqrt{2^{{{3}\over{4}}}-\sqrt{\sqrt{2}+1}}}\over{2^{{{7}\over{8}}}}}$

$\cos \frac{\pi}{16}={{\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}\over{2^{{{7}\over{8}}}}}$

$\sin \frac{\pi}{32}={{\sqrt{2^{{{7}\over{8}}}-\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}\over{2^{{{15}\over{16}}}}}$

$\cos \frac{\pi}{32}={{\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}\over{2^{{{15}\over{16}}}}}$

$\sin \frac{\pi}{64}={{\sqrt{2^{{{15}\over{16}}}-\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}\over{2^{{{31}\over{32}}}}}$

$\cos \frac{\pi}{64}={{\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}\over{2^{{{31}\over{32}}}}}$

$\sin \frac{\pi}{128}={{\sqrt{2^{{{31}\over{32}}}-\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}\over{2^{{{63}\over{64}}}}}$

$\cos \frac{\pi}{128}={{\sqrt{2^{{{31}\over{32}}}+\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}\over{2^{{{63}\over{64}}}}}$

$\sin \frac{\pi}{256}={{\sqrt{2^{{{63}\over{64}}}-\sqrt{2^{{{31}\over{32}}}+\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}}\over{2^{{{127}\over{128}}}}}$

$\cos \frac{\pi}{256}={{\sqrt{2^{{{63}\over{64}}}+\sqrt{2^{{{31}\over{32}}}+\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}}\over{2^{{{127}\over{128}}}}}$

$\sin \frac{\pi}{512}={{\sqrt{2^{{{127}\over{128}}}-\sqrt{2^{{{63}\over{64}}}+\sqrt{2^{{{31}\over{32}}}+\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}}}\over{2^{{{255}\over{256}}}}}$

$\cos \frac{\pi}{512}={{\sqrt{2^{{{127}\over{128}}}+\sqrt{2^{{{63}\over{64}}}+\sqrt{2^{{{31}\over{32}}}+\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}}}\over{2^{{{255}\over{256}}}}}$

$\sin \frac{\pi}{1024}={{\sqrt{2^{{{255}\over{256}}}-\sqrt{2^{{{127}\over{128}}}+\sqrt{2^{{{63}\over{64}}}+\sqrt{2^{{{31}\over{32}}}+\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}}}}\over{2^{{{511}\over{512}}}}}$

$\cos \frac{\pi}{1024}={{\sqrt{2^{{{255}\over{256}}}+\sqrt{2^{{{127}\over{128}}}+\sqrt{2^{{{63}\over{64}}}+\sqrt{2^{{{31}\over{32}}}+\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}}}}\over{2^{{{511}\over{512}}}}}$

$\sin \frac{\pi}{2048}={{\sqrt{2^{{{511}\over{512}}}-\sqrt{2^{{{255}\over{256}}}+\sqrt{2^{{{127}\over{128}}}+\sqrt{2^{{{63}\over{64}}}+\sqrt{2^{{{31}\over{32}}}+\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}}}}}\over{2^{{{1023}\over{1024}}}}}$

$\cos \frac{\pi}{2048}={{\sqrt{2^{{{511}\over{512}}}+\sqrt{2^{{{255}\over{256}}}+\sqrt{2^{{{127}\over{128}}}+\sqrt{2^{{{63}\over{64}}}+\sqrt{2^{{{31}\over{32}}}+\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}}}}}\over{2^{{{1023}\over{1024}}}}}$

$\sin \frac{\pi}{4096}={{\sqrt{2^{{{1023}\over{1024}}}-\sqrt{2^{{{511}\over{512}}}+\sqrt{2^{{{255}\over{256}}}+\sqrt{2^{{{127}\over{128}}}+\sqrt{2^{{{63}\over{64}}}+\sqrt{2^{{{31}\over{32}}}+\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}}}}}}\over{2^{{{2047}\over{2048}}}}}$

$\cos \frac{\pi}{4096}={{\sqrt{2^{{{1023}\over{1024}}}+\sqrt{2^{{{511}\over{512}}}+\sqrt{2^{{{255}\over{256}}}+\sqrt{2^{{{127}\over{128}}}+\sqrt{2^{{{63}\over{64}}}+\sqrt{2^{{{31}\over{32}}}+\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}}}}}}\over{2^{{{2047}\over{2048}}}}}$

$\sin \frac{\pi}{8192}={{\sqrt{2^{{{2047}\over{2048}}}-\sqrt{2^{{{1023}\over{1024}}}+\sqrt{2^{{{511}\over{512}}}+\sqrt{2^{{{255}\over{256}}}+\sqrt{2^{{{127}\over{128}}}+\sqrt{2^{{{63}\over{64}}}+\sqrt{2^{{{31}\over{32}}}+\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}}}}}}}\over{2^{{{4095}\over{4096}}}}}$

$\cos \frac{\pi}{8192}={{\sqrt{2^{{{2047}\over{2048}}}+\sqrt{2^{{{1023}\over{1024}}}+\sqrt{2^{{{511}\over{512}}}+\sqrt{2^{{{255}\over{256}}}+\sqrt{2^{{{127}\over{128}}}+\sqrt{2^{{{63}\over{64}}}+\sqrt{2^{{{31}\over{32}}}+\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}}}}}}}\over{2^{{{4095}\over{4096}}}}}$

$\sin \frac{\pi}{16384}={{\sqrt{2^{{{4095}\over{4096}}}-\sqrt{2^{{{2047}\over{2048}}}+\sqrt{2^{{{1023}\over{1024}}}+\sqrt{2^{{{511}\over{512}}}+\sqrt{2^{{{255}\over{256}}}+\sqrt{2^{{{127}\over{128}}}+\sqrt{2^{{{63}\over{64}}}+\sqrt{2^{{{31}\over{32}}}+\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}}}}}}}}\over{2^{{{8191}\over{8192}}}}}$

$\cos \frac{\pi}{16384}={{\sqrt{2^{{{4095}\over{4096}}}+\sqrt{2^{{{2047}\over{2048}}}+\sqrt{2^{{{1023}\over{1024}}}+\sqrt{2^{{{511}\over{512}}}+\sqrt{2^{{{255}\over{256}}}+\sqrt{2^{{{127}\over{128}}}+\sqrt{2^{{{63}\over{64}}}+\sqrt{2^{{{31}\over{32}}}+\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}}}}}}}}\over{2^{{{8191}\over{8192}}}}}$

$\sin \frac{\pi}{32768}={{\sqrt{2^{{{8191}\over{8192}}}-\sqrt{2^{{{4095}\over{4096}}}+\sqrt{2^{{{2047}\over{2048}}}+\sqrt{2^{{{1023}\over{1024}}}+\sqrt{2^{{{511}\over{512}}}+\sqrt{2^{{{255}\over{256}}}+\sqrt{2^{{{127}\over{128}}}+\sqrt{2^{{{63}\over{64}}}+\sqrt{2^{{{31}\over{32}}}+\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}}}}}}}}}\over{2^{{{16383}\over{16384}}}}}$

$\cos \frac{\pi}{32768}={{\sqrt{2^{{{8191}\over{8192}}}+\sqrt{2^{{{4095}\over{4096}}}+\sqrt{2^{{{2047}\over{2048}}}+\sqrt{2^{{{1023}\over{1024}}}+\sqrt{2^{{{511}\over{512}}}+\sqrt{2^{{{255}\over{256}}}+\sqrt{2^{{{127}\over{128}}}+\sqrt{2^{{{63}\over{64}}}+\sqrt{2^{{{31}\over{32}}}+\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}}}}}}}}}\over{2^{{{16383}\over{16384}}}}}$

${\small \sin \frac{\pi}{65536}={{\sqrt{2^{{{16383}\over{16384}}}-\sqrt{2^{{{8191}\over{8192}}}+\sqrt{2^{{{4095}\over{4096}}}+\sqrt{2^{{{2047}\over{2048}}}+\sqrt{2^{{{1023}\over{1024}}}+\sqrt{2^{{{511}\over{512}}}+\sqrt{2^{{{255}\over{256}}}+\sqrt{2^{{{127}\over{128}}}+\sqrt{2^{{{63}\over{64}}}+\sqrt{2^{{{31}\over{32}}}+\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}}}}}}}}}}\over{2^{{{32767}\over{32768}}}}}}$

${\small \cos \frac{\pi}{65536}={{\sqrt{2^{{{16383}\over{16384}}}+\sqrt{2^{{{8191}\over{8192}}}+\sqrt{2^{{{4095}\over{4096}}}+\sqrt{2^{{{2047}\over{2048}}}+\sqrt{2^{{{1023}\over{1024}}}+\sqrt{2^{{{511}\over{512}}}+\sqrt{2^{{{255}\over{256}}}+\sqrt{2^{{{127}\over{128}}}+\sqrt{2^{{{63}\over{64}}}+\sqrt{2^{{{31}\over{32}}}+\sqrt{2^{{{15}\over{16}}}+\sqrt{2^{{{7}\over{8}}}+\sqrt{2^{{{3}\over{4}}}+\sqrt{\sqrt{2}+1}}}}}}}}}}}}}}}\over{2^{{{32767}\over{32768}}}}}}$

$\sin \frac{\pi}{3}={{\sqrt{3}}\over{2}}$

$\cos \frac{\pi}{3}={{1}\over{2}}$

$\sin \frac{\pi}{6}={{1}\over{2}}$

$\cos \frac{\pi}{6}={{\sqrt{3}}\over{2}}$

$\sin \frac{\pi}{12}={{\sqrt{2-\sqrt{3}}}\over{2}}$

$\cos \frac{\pi}{12}={{\sqrt{\sqrt{3}+2}}\over{2}}$

$\sin \frac{\pi}{24}={{\sqrt{2-\sqrt{\sqrt{3}+2}}}\over{2}}$

$\cos \frac{\pi}{24}={{\sqrt{\sqrt{\sqrt{3}+2}+2}}\over{2}}$

$\sin \frac{\pi}{48}={{\sqrt{2-\sqrt{\sqrt{\sqrt{3}+2}+2}}}\over{2}}$

$\cos \frac{\pi}{48}={{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}}\over{2}}$

$\sin \frac{\pi}{96}={{\sqrt{2-\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}}}\over{2}}$

$\cos \frac{\pi}{96}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}}\over{2}}$

$\sin \frac{\pi}{192}={{\sqrt{2-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}}}\over{2}}$

$\cos \frac{\pi}{192}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}+2}}\over{2}}$

$\sin \frac{\pi}{384}={{\sqrt{2-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}+2}}}\over{2}}$

$\cos \frac{\pi}{384}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}+2}+2}}\over{2}}$

$\sin \frac{\pi}{768}={{\sqrt{2-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}+2}+2}}}\over{2}}$

$\cos \frac{\pi}{768}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}+2}+2}+2}}\over{2}}$

$\sin \frac{\pi}{1536}={{\sqrt{2-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}+2}+2}+2}}}\over{2}}$

$\cos \frac{\pi}{1536}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}+2}+2}+2}+2}}\over{2}}$

$\sin \frac{\pi}{3072}={{\sqrt{2-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}+2}+2}+2}+2}}}\over{2}}$

$\cos \frac{\pi}{3072}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}+2}+2}+2}+2}+2}}\over{2}}$

$\sin \frac{\pi}{6144}={{\sqrt{2-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}+2}+2}+2}+2}+2}}}\over{2}}$

$\cos \frac{\pi}{6144}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}}\over{2}}$

$\sin \frac{\pi}{12288}={{\sqrt{2-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}}}\over{2}}$

$\cos \frac{\pi}{12288}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}}\over{2}}$

$\sin \frac{\pi}{24576}={{\sqrt{2-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}}}\over{2}}$

$\cos \frac{\pi}{24576}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}}\over{2}}$

$\sin \frac{\pi}{49152}={{\sqrt{2-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}}}\over{2}}$

$\cos \frac{\pi}{49152}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}}\over{2}}$

$\sin \frac{\pi}{98304}={{\sqrt{2-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}}}\over{2}}$

$\cos \frac{\pi}{98304}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}}\over{2}}$

$\cos \frac{\pi}{5}={{\sqrt{5}+1}\over{4}}$

$\sin \frac{\pi}{10}={{\sqrt{3-\sqrt{5}}}\over{2^{{{3}\over{2}}}}}$

$\cos \frac{\pi}{10}={{\sqrt{\sqrt{5}+5}}\over{2^{{{3}\over{2}}}}}$

$\sin \frac{\pi}{20}={{\sqrt{2^{{{3}\over{2}}}-\sqrt{\sqrt{5}+5}}}\over{2^{{{5}\over{4}}}}}$

$\cos \frac{\pi}{20}={{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}}\over{2^{{{5}\over{4}}}}}$

$\sin \frac{\pi}{40}={{\sqrt{2^{{{5}\over{4}}}-\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}}}\over{2^{{{9}\over{8}}}}}$

$\cos \frac{\pi}{40}={{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}}\over{2^{{{9}\over{8}}}}}$

$\sin \frac{\pi}{80}={{\sqrt{2^{{{9}\over{8}}}-\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}}}\over{2^{{{17}\over{16}}}}}$

$\cos \frac{\pi}{80}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}}\over{2^{{{17}\over{16}}}}}$

$\sin \frac{\pi}{160}={{\sqrt{2^{{{17}\over{16}}}-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}}}\over{2^{{{33}\over{32}}}}}$

$\cos \frac{\pi}{160}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}}\over{2^{{{33}\over{32}}}}}$

$\sin \frac{\pi}{320}={{\sqrt{2^{{{33}\over{32}}}-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}}}\over{2^{{{65}\over{64}}}}}$

$\cos \frac{\pi}{320}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}+2^{{{33}\over{32}}}}}\over{2^{{{65}\over{64}}}}}$

$\sin \frac{\pi}{640}={{\sqrt{2^{{{65}\over{64}}}-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}+2^{{{33}\over{32}}}}}}\over{2^{{{129}\over{128}}}}}$

$\cos \frac{\pi}{640}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}+2^{{{33}\over{32}}}}+2^{{{65}\over{64}}}}}\over{2^{{{129}\over{128}}}}}$

$\sin \frac{\pi}{1280}={{\sqrt{2^{{{129}\over{128}}}-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}+2^{{{33}\over{32}}}}+2^{{{65}\over{64}}}}}}\over{2^{{{257}\over{256}}}}}$

$\cos \frac{\pi}{1280}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}+2^{{{33}\over{32}}}}+2^{{{65}\over{64}}}}+2^{{{129}\over{128}}}}}\over{2^{{{257}\over{256}}}}}$

$\sin \frac{\pi}{2560}={{\sqrt{2^{{{257}\over{256}}}-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}+2^{{{33}\over{32}}}}+2^{{{65}\over{64}}}}+2^{{{129}\over{128}}}}}}\over{2^{{{513}\over{512}}}}}$

$\cos \frac{\pi}{2560}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}+2^{{{33}\over{32}}}}+2^{{{65}\over{64}}}}+2^{{{129}\over{128}}}}+2^{{{257}\over{256}}}}}\over{2^{{{513}\over{512}}}}}$

$\sin \frac{\pi}{5120}={{\sqrt{2^{{{513}\over{512}}}-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}+2^{{{33}\over{32}}}}+2^{{{65}\over{64}}}}+2^{{{129}\over{128}}}}+2^{{{257}\over{256}}}}}}\over{2^{{{1025}\over{1024}}}}}$

$\cos \frac{\pi}{5120}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}+2^{{{33}\over{32}}}}+2^{{{65}\over{64}}}}+2^{{{129}\over{128}}}}+2^{{{257}\over{256}}}}+2^{{{513}\over{512}}}}}\over{2^{{{1025}\over{1024}}}}}$

$\sin \frac{\pi}{10240}={{\sqrt{2^{{{1025}\over{1024}}}-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}+2^{{{33}\over{32}}}}+2^{{{65}\over{64}}}}+2^{{{129}\over{128}}}}+2^{{{257}\over{256}}}}+2^{{{513}\over{512}}}}}}\over{2^{{{2049}\over{2048}}}}}$

$\cos \frac{\pi}{10240}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}+2^{{{33}\over{32}}}}+2^{{{65}\over{64}}}}+2^{{{129}\over{128}}}}+2^{{{257}\over{256}}}}+2^{{{513}\over{512}}}}+2^{{{1025}\over{1024}}}}}\over{2^{{{2049}\over{2048}}}}}$

$\sin \frac{\pi}{20480}={{\sqrt{2^{{{2049}\over{2048}}}-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}+2^{{{33}\over{32}}}}+2^{{{65}\over{64}}}}+2^{{{129}\over{128}}}}+2^{{{257}\over{256}}}}+2^{{{513}\over{512}}}}+2^{{{1025}\over{1024}}}}}}\over{2^{{{4097}\over{4096}}}}}$

$\cos \frac{\pi}{20480}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}+2^{{{33}\over{32}}}}+2^{{{65}\over{64}}}}+2^{{{129}\over{128}}}}+2^{{{257}\over{256}}}}+2^{{{513}\over{512}}}}+2^{{{1025}\over{1024}}}}+2^{{{2049}\over{2048}}}}}\over{2^{{{4097}\over{4096}}}}}$

$\sin \frac{\pi}{40960}={{\sqrt{2^{{{4097}\over{4096}}}-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}+2^{{{33}\over{32}}}}+2^{{{65}\over{64}}}}+2^{{{129}\over{128}}}}+2^{{{257}\over{256}}}}+2^{{{513}\over{512}}}}+2^{{{1025}\over{1024}}}}+2^{{{2049}\over{2048}}}}}}\over{2^{{{8193}\over{8192}}}}}$

$\cos \frac{\pi}{40960}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}+2^{{{33}\over{32}}}}+2^{{{65}\over{64}}}}+2^{{{129}\over{128}}}}+2^{{{257}\over{256}}}}+2^{{{513}\over{512}}}}+2^{{{1025}\over{1024}}}}+2^{{{2049}\over{2048}}}}+2^{{{4097}\over{4096}}}}}\over{2^{{{8193}\over{8192}}}}}$

${\small \sin \frac{\pi}{81920}={{\sqrt{2^{{{8193}\over{8192}}}-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}+2^{{{33}\over{32}}}}+2^{{{65}\over{64}}}}+2^{{{129}\over{128}}}}+2^{{{257}\over{256}}}}+2^{{{513}\over{512}}}}+2^{{{1025}\over{1024}}}}+2^{{{2049}\over{2048}}}}+2^{{{4097}\over{4096}}}}}}\over{2^{{{16385}\over{16384}}}}}}$

${\small \cos \frac{\pi}{81920}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}+2^{{{33}\over{32}}}}+2^{{{65}\over{64}}}}+2^{{{129}\over{128}}}}+2^{{{257}\over{256}}}}+2^{{{513}\over{512}}}}+2^{{{1025}\over{1024}}}}+2^{{{2049}\over{2048}}}}+2^{{{4097}\over{4096}}}}+2^{{{8193}\over{8192}}}}}\over{2^{{{16385}\over{16384}}}}}}$

${\small \sin \frac{\pi}{163840}={{\sqrt{2^{{{16385}\over{16384}}}-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}+2^{{{33}\over{32}}}}+2^{{{65}\over{64}}}}+2^{{{129}\over{128}}}}+2^{{{257}\over{256}}}}+2^{{{513}\over{512}}}}+2^{{{1025}\over{1024}}}}+2^{{{2049}\over{2048}}}}+2^{{{4097}\over{4096}}}}+2^{{{8193}\over{8192}}}}}}\over{2^{{{32769}\over{32768}}}}}}$

${\small \cos \frac{\pi}{163840}={{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}+5}+2^{{{3}\over{2}}}}+2^{{{5}\over{4}}}}+2^{{{9}\over{8}}}}+2^{{{17}\over{16}}}}+2^{{{33}\over{32}}}}+2^{{{65}\over{64}}}}+2^{{{129}\over{128}}}}+2^{{{257}\over{256}}}}+2^{{{513}\over{512}}}}+2^{{{1025}\over{1024}}}}+2^{{{2049}\over{2048}}}}+2^{{{4097}\over{4096}}}}+2^{{{8193}\over{8192}}}}+2^{{{16385}\over{16384}}}}}\over{2^{{{32769}\over{32768}}}}}}$

Os termos $8$, $3$, $10$, $7$, $6$, $5$ e $15$ são $7$ dos $9$ de uma sequência. Qual a maior mediana possível da sequência?

Para que a mediana seja máxima, devemos adicionar termos maiores que o maior. Assim o maior termo central possível (a sequência tem um número ímpar de termos) é $8$.

Um produto teve um aumento total de preço de $61\%$ por meio de dois aumentos sucessivos. Se o primeiro aumento foi de $15\%$, de quanto foi o segundo aumento?

Suponha $p$ o preço original do produto, e $x - 1$ o percentual de aumento:

$1,61 \cdot p = x \cdot 1,15 \cdot p\ \Rightarrow\ x = \dfrac{1,61}{1,15} = 1,4\ \Rightarrow\ x - 1 = \fbox{$40\%$}$.

Em uma sequência de $n$ termos, $n > 1$, um termo é $1 - \dfrac{1}{n}$ e os restantes são iguais a $1$. Qual a média aritmética dos $n$ termos?

A soma dos $n - 1$ termos iguais a $1$ será $n - 1$.

$m = \dfrac{n - 1 + 1 - \dfrac{1}{n}}{n} = \dfrac{n - \dfrac{1}{n}}{n} = \fbox{$1 - \dfrac{1}{n^2}$}$

quinta-feira, 6 de janeiro de 2022

Soma dos termos de uma PG infinita convergente.

De $S_n = \dfrac{a_1(q^n - 1)}{q - 1}$, com $|q| < 1$:

$\displaystyle\lim_{n \rightarrow +\infty} S_n = \fbox{$\dfrac{a_1}{1 - q}$}$.

Soma dos termos de uma PG finita.

$S_n = \displaystyle\sum_{i=1}^n a_i$

Se $q = 1$, $S_n = na_1$. Se não:

$qS_n = \left(\displaystyle\sum_{i=2}^n a_i\right) + qa_n$

$qS_n - S_n = \cancelto{a_1 q^n}{qa_n} - a_1$

$\fbox{$S_n = \dfrac{a_1(q^n - 1)}{q - 1}$}$.

Soma dos termos de uma PA finita.

Observemos que os termos equidistantes dos extremos de uma PA finita tem soma constante:

$a_1 + a_n = a_{1 + p} + a_{n - p},\ p \in \mathbb{N},\ p < n$.

$2S_n = \displaystyle\sum_{i=0}^{n - 1} \left(a_{1 + i} + a_{n - i}\right) = \displaystyle\sum_{i=0}^{n - 1} \left(a_1 + a_n\right) = n\left(a_1 + a_n\right)$

Logo, $\fbox{$S_n = \dfrac{\left(a_1 + a_n\right)n}{2}$}$.

Posições dos elementos distinguidos em matrizes com o mesmo espaço de linhas.

Se duas matrizes escalonadas tem o mesmo espaço de linhas, os elementos distinguidos estão nas mesmas posições. Ou seja, se $A = (a_{ij})$ e $B = (b_{k\ell})$ tem o mesmo espaço de linhas, se $a_{ij_m}$ e $b_{k\ell_n}$ são os elementos distinguidos das linhas $i$ de $A$ e $B$, $j_m = \ell_n$ para $i = k$.

Tomemos a linha $R_1$ de $A$. $R_1$ é uma combinação linear das linhas de $B$. Como, $a_{1j_1} = \displaystyle\sum_{o = 1}^s c_o b_{o \ell_1} = c_1 b_{1 \ell_1}$ e $a_{1j_1} \neq 0$ e $b_{1 \ell_1} \neq 0$, $c_1 \neq 0$, logo $j_1 = \ell_1$.

Provemos agora que a matriz $A'$, resultante da remoção da primeira linha de $A$ tem o mesmo espaço de linhas da matriz $B'$, resultante da remoção da primeira linha da matriz $B$.

Sejam $R_i,\ i \neq 1$, uma linha de $A$ e $R'_k$ uma linha de $B$, $R_i$ é uma combinação linear das linhas de $B$. Como $a_{ij_1} = 0,\ \forall i \neq 1$, $R_i = \displaystyle\sum_{o=2}^s c_o R'_o$, logo $A'$ e $B'$ tem o mesmo espaço de linhas.

Procedendo recursivamente estas duas etapas até que se tenha chegado à última linha não nula de $A$, repetindo todo o procedimento permutando-se $A$ e $B$, o teorema está demonstrado.

Quod Erat Demonstrandum.

Se uma matriz quadrada $A$ tem uma linha nula, não tem inversa.

Seja $R_i$ a linha nula de $A$. O produto de $A$ e qualquer outra matriz quadrada de mesma ordem terá a linha $i$ nula.

Como $I$ não tem linhas nulas, $A$ não é invertível.

Quod Erat Demonstrandum.

Seja $A$ uma matriz invertível, $(A^{-1})^t = (A^t)^{-1}$.

Seja $B = A^{-1}$, $I = I^t = (AB)^t = B^t A^t$.

Logo $B^t$ é a inversa de $A^t$, ou seja, $(A^{-1})^t = (A^t)^{-1}$.

Quod Erat Demonstrandum.

Meme: coeficiente 1 para integrar por partes.


 

Seja $V$ o espaço vetorial das matrizes quadradas $n\ x\ n$, o subconjunto $W$ das matrizes que comutam com $T$ formam um subespaço.

$W$ não é vazio, pois $0T = T0 = 0$.

Sejam $a$ e $b$ escalares e $M_1$ e $M_2$ elementos de $W$:

$(aM_1 + bM_2)T = aM_1 T + bM_2 T = aTM_1 + bTM_2 = TaM_1 + TbM_2 = T(aM_1 + bM_2)$.

Logo $aM_1 + bM_2 \in W$.

Quod Erat Demonstrandum.

quarta-feira, 5 de janeiro de 2022

Calcular $I\ =\ \displaystyle\int \sin (\sqrt{x})\ dx$.

$I\ =\ x\sin (\sqrt{x}) - \displaystyle\int \dfrac{x\cos (\sqrt{x})}{2\sqrt{x}}\ dx$

Seja $u = \sqrt{x}$, $du = \dfrac{dx}{2\sqrt{x}}$.

$I\ =\ x\sin (\sqrt{x}) - \displaystyle\int u^2\cos u\ du$

$I\ =\ x\sin (\sqrt{x}) - u^2\sin u + 2\displaystyle\int u\sin u\ du$

$I\ =\ x\sin (\sqrt{x}) - u^2\sin u - 2u\cos u + 2\displaystyle\int \cos u\ du$

$I\ =\ \cancel{x\sin (\sqrt{x})} - \cancel{x\sin (\sqrt{x})} - 2\sqrt{x}\cos (\sqrt{x}) + 2\sin (\sqrt{x}) + c$

$\fbox{$I = -2\sqrt{x}\cos (\sqrt{x}) + 2\sin (\sqrt{x}) + c$}$