$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 29-09-2024.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

sábado, 19 de outubro de 2024

Seja $V$ o espaço vetorial de todas as funções de um corpo $K$ em um corpo $K$; seja $U$ o subespaço das funções pares e $W$ o subespaço das funções ímpares. Mostrar que $V = U \oplus W$.

Sejam $f$ uma função par e $g$ uma função ímpar. Seja uma função $h$ tal que $h(x) = f(x) + g(x)$ (I).

$h(-x) = f(x) - g(x)$ (II)

Somando (I) e (II) obtemos $f(x) = \dfrac{h(x) + h(-x)}{2}$

Subtraindo (II) de (I) obtemos $g(x) = \dfrac{h(x) - h(-x)}{2}$

Como $h(x) = \underset{\text{Função par.}}{\underbrace{\dfrac{h(x) + h(-x)}{2}}} + \underset{\text{Função ímpar.}}{\underbrace{\dfrac{h(x) - h(-x)}{2}}}$,

$V = U + W$ (III)

Como a única função que é simultaneamente par e ímpar é a função nula $O$,

$U \cap W = \{O\}$ (IV)

Por (III) e (IV), obtemos o desejado.

Nenhum comentário:

Postar um comentário