$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 29-09-2024.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

sábado, 7 de janeiro de 2023

Sabendo que a área do paralelogramo é $24$, encontrar a área da região hachurada.

 

A área do triângulo $\Delta PAB$ é $12$. Seja $a = AB$ a base e $h$ a altura de tal triângulo. $ah = 24$.


Sejam $CD = a' = \dfrac{a}{2}$ e $h' = \dfrac{3}{2} \cdot h$ a base e a altura, respectivamente, do triângulo $\Delta PCD$, $a'h' = 18$. Logo a área do triângulo $\Delta PCD$ é $9$.


Como $\Delta PCD\ \sim\ \Delta PEF$ e a razão de semelhança é $\dfrac{h'}{h} = \dfrac{3}{2}$, a área de $\Delta PEF$ é $4$. Logo a área da região hachurada é $\fbox{$5$}$.

Nenhum comentário:

Postar um comentário