Seja $\langle f, g \rangle = \displaystyle\int_{-\pi/2}^{\pi/2} f(x) \cdot g(x)\ dx$, mostre que
Demonstração:
$\|\cos x\| = \sqrt{\displaystyle\int_{-\pi/2}^{\pi/2} \cos^2 x\ dx} = \sqrt{\dfrac{\pi}{2}}$
$\|\sin x\| = \sqrt{\displaystyle\int_{-\pi/2}^{\pi/2} \sin^2 x\ dx} = \sqrt{\dfrac{\pi}{2}}$
$\|x\| = \sqrt{\displaystyle\int_{-\pi/2}^{\pi/2} x^2\ dx} = \sqrt{\dfrac{\pi^3}{12}}$
Logo, $\|\sin x\|^2 + \|\cos x\|^2 = \left(\dfrac{\sqrt{12}}{\pi}\|x\|\right)^2$.
Nenhum comentário:
Postar um comentário