Um posto de combustível vende $10000$ litros de álcool por dia a R\$ $1,50$ cada litro. Seu proprietário percebeu que, para cada centavo de desconto que concedia por litro, eram vendidos $100$ litros a mais por dia. Por exemplo, no dia em que o preço do álcool foi R\$ $1,48$, foram vendidos $10200$ litros.
Considerando $x$ o valor, em centavos, do desconto dado no preço de cada litro, e $V$ o valor, em R\$, arrecadado por dia com a venda do álcool, qual a expressão que relaciona $V$ e $x$?
$V = \underset{\text{Quantidade}}{\underbrace{(10000 + 100x)}} \cdot \underset{\text{Valor unitário}}{\underbrace{(1,5 - 0,01x)}} = \fbox{$-x^2 + 50x + 15000$}$
Nenhum comentário:
Postar um comentário