Sejam $f$ e $g$ funções diferenciáveis,
$(f \cdot g)'(x) = \displaystyle\lim_{a \rightarrow 0} \dfrac{(f \cdot g)(x + a) - (f \cdot g)(x)}{a} =$
$= \displaystyle\lim_{a \rightarrow 0} \dfrac{f(x + a) \cdot g(x + a) - f(x) \cdot g(x) + f(x + a) \cdot g(x) - f(x + a) \cdot g(x)}{a} =$
$= \displaystyle\lim_{a \rightarrow 0} \dfrac{f(x + a)[g(x + a) - g(x)]}{a} + \displaystyle\lim_{a \rightarrow 0} \dfrac{g(x)[f(x + a) - f(x)]}{a} = f(x)g'(x) + g(x)f'(x)$.
Quod Erat Demonstrandum.
Nenhum comentário:
Postar um comentário