$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 07-07-2023.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

domingo, 20 de junho de 2021

Descontinuidade da função característica dos racionais.

Mostre que a função \textit{característica dos racionais}, definida por

$\mathcal{X}_\mathbb{Q}(x) = \begin{cases}1,\text{ se }x \in \mathbb{Q}\\0,\text{ se }x \not{\in} \mathbb{Q}\end{cases}$

é descontínua em todos os pontos.

Resolução:

Vamos supor que existe um $p$ tal que $\mathcal{X}_\mathbb{Q}$ é contínua em $p$, ou seja, $\lim_{x \rightarrow p} \mathcal{X}_\mathbb{Q}(x) = \mathcal{X}_\mathbb{Q}(p)$, ou seja, pela definição de limite, $\forall \epsilon > 0,\ \exists \delta > 0\ :\ |x - p| < \delta\ \Rightarrow\ |\mathcal{X}_\mathbb{Q}(x) - \mathcal{X}_\mathbb{Q}(p)| < \epsilon$.

Seja $p$ racional, Se $x$ for irracional, não existe $\delta$ para $\epsilon = \dfrac{1}{2}$.

Analogamente, se $p$ é irracional, e se $x$ for racional, não existe $\delta$ para $\epsilon = \dfrac{1}{2}$.

Logo, por absurdo, $\mathcal{X}_\mathbb{Q}$ é descontínua em todos os pontos.

Nenhum comentário:

Postar um comentário