$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 07-07-2023.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

segunda-feira, 21 de junho de 2021

Demonstração da irracionalidade de $\sqrt{2}$.

Visando chegar a uma contradição, vamos supor que $\sqrt{2}$ seja racional, ou seja, $\sqrt{2} = \dfrac{p}{q},\ p,q \in \mathbb{Q},\ q \neq 0,\ \dfrac{p}{q}\text{ fração irredutível}$.

$2 = \dfrac{p^2}{q^2}\ \Rightarrow\ p^2 = 2q^2$ (I)

Por (I), $p$ deve ser par, logo podemos escrever, para um $s$ inteiro, $p = 2s$.

$p = 2s\ \wedge\ \text{(I)}\ \Rightarrow\ 4s^2 = 2q^2\ \Rightarrow\ 2s^2 = q^2\ \Rightarrow\ q\text{ é par.}$ (II)

(II) é um absurdo, pois, por hipótese, $\dfrac{p}{q}$ é uma fração irredutível.

Logo, $\sqrt{2}$ é irracional.

Nenhum comentário:

Postar um comentário