Seja $a\ =\ \rho(\cos \theta\ +\ i\sin \theta),\ \rho \in \mathbb{R},\ \rho \ge 0,\ \theta \in [0, 2\pi[$,
$\sqrt[n]{a}\ =\ \sqrt[n]{\rho}\left[\cos \left(\dfrac{\theta}{n} + \dfrac{2k\pi}{n}\right)\ +\ i\sin \left(\dfrac{\theta}{n} + \dfrac{2k\pi}{n}\right)\right],\ k \in \mathbb{Z}$
$\left(\sqrt[n]{a}\right)^n\ =\ \left(\sqrt[n]{\rho}\right)^n \left[\cos \left(\dfrac{n\theta}{n} + \dfrac{2nk\pi}{n}\right)\ +\ i\sin \left(\dfrac{n\theta}{n} + \dfrac{2nk\pi}{n}\right)\right] = a$.
Quod Erat Demonstrandum.
Nenhum comentário:
Postar um comentário