Seja $(x_o, y_o)$ um ponto de uma curva ou região, e $(x_i, y_i)$ o ponto simétrico de $(x_o, y_o)$ com relação ao ponto $(a, b)$:
$(x_i, y_i) = (2a - x_o, 2b - y_o)$.
Exemplo:
Seja a circunferência $x^2 + y^2 = 1$, a curva simétrica de tal circunferência em relação a $(2, 2)$ é $(4 - x)^2 + (4 - y)^2 = 1$.
Nenhum comentário:
Postar um comentário