Seja uma curva no espaço dada por
$\begin{cases}x = f(t)\\ y = g(t)\\ z = h(t)\end{cases}$
Seja $C$ a soma de todas as distâncias entre os pontos de coordenadas $[f(t_{i+1}), g(t_{i+1}), h(t_{i+1}),]$, e $[f(t_i), g(t_i), h(t_i)]$, $t \in (a, b)$.
$C = \displaystyle\lim_{N \rightarrow 0} \sum \sqrt{[f(t_{i+1}) - f(t_i)]^2 + [g(t_{i+1}) - g(t_i)]^2 + [h(t_{i+1}) - h(t_i)]^2}$.
Sejam $t_{k_i}$ tais que $t_i \le t_{k_i} \le t_{i+1}$. Pelo Teorema do Valor Médio:
$C = \displaystyle\lim_{N \rightarrow 0} \sum \sqrt{[(t_{i+1} - t_i)f'(t_{k_i})]^2 + [(t_{i+1} - t_i)g'(t_{k_i})]^2 + [(t_{i+1} - t_i)h'(t_{k_i})]^2} =$
$= \displaystyle\lim_{N \rightarrow 0} \sum \sqrt{[f'(t_{k_i})]^2 + [g'(t_{k_i})]^2 + [h'(t_{k_i})]^2}(t_{i+1} - t_i)$
Logo, pela definição de integral:
$\fbox{$C = \displaystyle\int_a^b \sqrt{[f'(t)]^2 + [g'(t)]^2 + [h'(t)]^2}\ dt$}$
Exemplo:
Seja a helicoidal
$\begin{cases}x = \cos t\\ y = \sin t\\ z = \dfrac{t}{2}\end{cases}$.
O comprimento dela de $t = 0$ a $t = 2\pi$ é
$C = \displaystyle\int_0^{2\pi} \sqrt{\sin^2 t + \cos^2 t + \dfrac{1}{4}}\ dt = \sqrt{5}\pi$.