Sejam $f:\mathbb{R} \rightarrow \mathbb{R}$ e $g:\mathbb{R}_+^* \rightarrow \mathbb{R}$ definidas por $f(x) = \dfrac{5^x}{2}$ e $g(x) = \log_{10} x$, construir o gráfico de $g \circ f$.
$(g \circ f)(x) = \log_{10} \dfrac{5^x}{2} = \dfrac{\log_5 5^x}{\log_5 10} - \log_{10} 2 = \dfrac{x}{\log_5 10} - \log_{10} 2$
Basta construir a reta que contém os pontos $\left(0, - \log_{10} 2\right)$ e $\left(1, \log_{10} \dfrac{5}{2}\right)$.
Observemos que $Im_f \subset D_g$.
Nenhum comentário:
Postar um comentário