$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 18-05-2024.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

sexta-feira, 14 de dezembro de 2012

Exercício: equação exponencial #2.

(MACK-SP) A solução real da equação $4^x + 6^x\ =\ 2\ \cdot\ 9^x$ está no intervalo:

a) $-1\ \le\ x\ \le\ 1$.

b) $2\ \le\ x\ \le\ 3$.

c) $3\ \le\ x\ \le\ 4$.

d) $-4\ \le\ x\ \le\ -3$.

e) $20\ \le\ x\ \le 30$.

Resolução:

Façamos a transformação $p\ =\ 2^x$ e $q\ =\ 3^x$:

$p^2 + pq\ =\ 2q^2$

$p^2 + qp - 2q^2\ =\ 0$

Resolvendo a equação em $p$ :

$(p\ =\ -2q)\ \vee\ (p\ =\ q)$

Primeiro caso :

$2^x\ =\ -2\ \cdot\ 3^x$

$2^{x - 1}\ =\ 3^{-x}$

$\log_2 (3^{-x})\ =\ x - 1$

$(-x)\ \cdot\ log_2 3\ =\ x - 1$

$x [(\log_2 3) + 1]\ =\ 1$

$x\ =\ \dfrac{1}{(\log_2 3) + 1}$

Como $(\log_2 3) + 1\ >\ 1$ então $0\ <\ x\ <\ 1$
__

Segundo caso :

$2^x\ =\ 3^x$

Donde :

$x\ =\ 0$

Logo, a alternativa correta é a A.

Exercício: ponto crítico de uma função exponencial.

(Vunesp-SP) Dada a expressão $(\dfrac{1}{2})^{4x - x^2}$, então:

a) O maior valor da expressão é $4$..

b) O menor valor da expressão é $\dfrac{1}{4}$.

c) O maior valor da expressão é $\dfrac{1}{4}$.

d) O maior valor da expressão é $\dfrac{1}{16}$.

e) O menor valor da expressão é $\dfrac{1}{16}$.

Resolução:

A expressão assumirá um valor máximo ou mínimo de acordo com seu expoente.

$4x - x^2$ terá um máximo absoluto, este que será $-\dfrac{16}{-4}\ =\ 4$.

Assim, por $0\ <\ \dfrac{1}{2}\ <\ 1$, $(\dfrac{1}{2})^4\ =\ \dfrac{1}{16}$ será mínimo.

A alternativa correta é a E.

Exercício: áreas na função logaritmica.

(Vunesp-SP) A curva da figura representa o gráfico da função $y\ =\ \log_a x$ com $a\ >\ 1$. Dos pontos $B\ =\ (2\ ,\ 0)$ e $C\ =\ (4\ ,\ 0)$ saem perpendiculares ao eixo das abscissas, as quais interceptam a curva em $D$ e $E$, respectivamente. Se a área do trapézio retangular $BCED$ vale $3$, provar que a área do triângulo $ABD$, onde $A\ =\ (1\ ,\ 0)$, vale $\dfrac{1}{2}$.



Resolução:

Primeiramente calculemos as ordenadas de $D$ e $E$:

$D\ =\ (2\ ,\ \log_a 2)$

$E\ =\ (4\ ,\ \log_a 4)$

Calculemos a área $S_1$ do trapézio:

$S_1\ =\ \dfrac{(\log_a 2 + \log_a 2^2)\ \cdot\ (4 - 2)}{2}\ =\ 3\log_a 2$

Como $S_1\ =\ 3$, temos:

$\log_a 2\ =\ 1\ \Rightarrow\ a\ =\ 2$

Então $D\ =\ (2\ ,\ 1)$

Logo a área $S_2$ do triângulo será :

$S_2\ =\ \dfrac{(2 - 1)\ \cdot\ 1}{2}\ =\ \dfrac{1}{2}$.

Exercício: equação mista.

(Fuvest-SP) A equação $2^x\ =\ -3x + 2$, com $x$ real:

a) Não tem solução.

b) Tem uma única solução entre $0$ e $\dfrac{2}{3}$.

c) Tem uma única solução entre $-\dfrac{2}{3}$ e $0$.

d) Tem duas soluções, sendo uma positiva e outra negativa.

e) Tem mais de duas soluções.

Resolução:

Como estamos lidando com funções mistas: uma exponencial e outra afim, vamos analisar cada uma individualmente.

$2^x$ será sempre positiva. Consequentemente devemos encontrar os valores de $x$ para os quais $-3x + 2$ seja positiva.

$x\ <\ \dfrac{2}{3}$

Observemos que se $x\ =\ 0$, $2^x\ =\ 1 $ e $ -3x + 2\ =\ 2$, e como a primeira é crescente e a segunda é decrescente para todo $x\ >\ 0$, elas se tocarão em um único ponto. E pela condição [1], concluímos que a equação dada terá uma única solução entre $0$ e $\dfrac{2}{3}$

A alternativa correta é a B.

Exercício: função exponencial.

(Vunesp-SP) Seja $p\ >\ 0$, $p\ \neq\ 1$, um número real. Dada a relação $\dfrac{p^{-y}}{1 + p^{-y}}\ =\ x$, determinar $y$ em função de $x$ e o domínio da função assim definida.

Resolução :

$\dfrac{1 + p^{-y}}{p^{-y}}\ =\ \dfrac{1}{x}$

$p^y + 1\ =\ \dfrac{1}{x}$

$y\ =\ \log_p \dfrac{1 - x}{x}$

Se $y$ é função real, $\dfrac{1 - x}{x}$ deve ser positivo.

$x\ >\ 0\ \wedge\ 1 - x\ >\ 0\ \Rightarrow\ 0\ <\ x\ <\ 1$

$x\ <\ 0\ \wedge\ 1 - x\ <\ 0\ \Rightarrow\ \nexists\ x$

Logo $D_y\ =\ ]0\ ,\ 1[$.

Exercício: logaritmos #2.

(EFEI-MG) Se $\log_a x\ =\ P$, $\log_b x\ =\ Q$ e $\log_{abc} x\ =\ R$, determine $\log_c x$ em função de $P$, $Q$ e $R$.

Consideremos inicialmente $x\ \neq\ 1$, então:

$\log_x a\ =\ \dfrac{1}{P}$

$\log_x b\ =\ \dfrac{1}{Q} $

$\log_x abc\ =\ \dfrac{1}{R}$

E chamando $\log_c x\ =\ S$

$\log_x c\ =\ \dfrac{1}{S}$

Teremos:

$(\log_x a) + (\log_x b) + (\log_x c)\ =\ \dfrac{1}{P} + \dfrac{1}{Q} + \dfrac{1}{S}\ =\ \log_x abc\ =\ \dfrac{1}{R}$

Donde:

$\dfrac{1}{S}\ =\ \dfrac{PQ - PR - QR}{PQR}\ \Rightarrow\ S\ =\ \dfrac{PQ - PR - QR}{PQR}$
__

E para $x\ =\ 1$:

$\log_c x\ =\ 0$

Exercício: logaritmos.

(Vunesp-SP) Sejam $a$ e $b$ números reais maiores que zero e tais que $ab\ =\ 1$. Se $a\ \neq\ 1$ e $\log_a x\ =\ \log_b y$, determine o valor de $xy$.

Resolução:

Observemos que se $a\ \neq\ 1$ também teremos $b\ \neq\ 1$, o que garante a existência de $\log_b y$.

Se $ab\ =\ 1$ então $b\ =\ \dfrac{1}{a}$, assim:

$\log_a x\ =\ \log_\dfrac{1}{a} y$

$\log_a x\ =\ \log_a \dfrac{1}{y}$

Donde :

$x\ =\ \dfrac{1}{y}\ \Rightarrow\ xy\ =\ 1$