$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 01-08-2024.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

domingo, 11 de agosto de 2024

quinta-feira, 13 de junho de 2024

De quantas formas podemos expressar $257$ como uma soma de dois números primos?

Observemos que $257$ é ímpar, e todos os números primos, com exceção do $2$, são ímpares; como a soma de dois ímpares é par, uma parcela deve ser o $2$. Assim teríamos

$257 = 2 + 255$

Mas $255$ não é primo, logo não há uma forma sequer de escrever $257$ como a soma de dois primos.

quarta-feira, 5 de junho de 2024

Temperatura de Antonio Vandré.

Em um gás ideal, a energia cinética média de uma partícula é dada por $e_c = \dfrac{3}{2}kT$, $k$ a constante de Boltzmann, e $T$ a temperatura absoluta.

Por que não poderíamos imaginarmos viver imersos em um gás cujas partículas são de dimensões familiares à nossa realidade, tal como um corpo esférico dotado de massa e velocidade?

Assim poderíamos atribuir uma temperatura a um objeto considerando apenas ele com sua energia cinética, não sua temperatura no sentido convencional, mas uma nova, que chamarei de Temperatura de Antonio Vandré.

Assim, a Temperatura de Antonio Vandré será dada pela fórmula:

$\fbox{$T_a = \dfrac{mv^2}{3k}$}$

Exemplo:

Seja um corpo de $1\ kg$ movendo-se a $1\ m/s$, sua temperatura de Antonio Vandré será:

$T_a \approx \dfrac{1}{3 \cdot 1,38 \cdot 10^{-23}} \approx 2,42 \cdot 10^{22}\ K$

Comprimento de uma curva tridimensional em coordenadas paramétricas.

Seja uma curva no espaço dada por

$\begin{cases}x = f(t)\\ y = g(t)\\ z = h(t)\end{cases}$

Seja $C$ a soma de todas as distâncias entre os pontos de coordenadas $[f(t_{i+1}), g(t_{i+1}), h(t_{i+1}),]$, e $[f(t_i), g(t_i), h(t_i)]$, $t \in (a, b)$.

$C = \displaystyle\lim_{N \rightarrow 0} \sum \sqrt{[f(t_{i+1}) - f(t_i)]^2 + [g(t_{i+1}) - g(t_i)]^2 + [h(t_{i+1}) - h(t_i)]^2}$.

Sejam $t_{k_i}$ tais que $t_i \le t_{k_i} \le t_{i+1}$. Pelo Teorema do Valor Médio:

$C = \displaystyle\lim_{N \rightarrow 0} \sum \sqrt{[(t_{i+1} - t_i)f'(t_{k_i})]^2 + [(t_{i+1} - t_i)g'(t_{k_i})]^2 + [(t_{i+1} - t_i)h'(t_{k_i})]^2} =$

$= \displaystyle\lim_{N \rightarrow 0} \sum \sqrt{[f'(t_{k_i})]^2 + [g'(t_{k_i})]^2 + [h'(t_{k_i})]^2}(t_{i+1} - t_i)$

Logo, pela definição de integral:

$\fbox{$C = \displaystyle\int_a^b \sqrt{[f'(t)]^2 + [g'(t)]^2 + [h'(t)]^2}\ dt$}$

Exemplo:

Seja a helicoidal

$\begin{cases}x = \cos t\\ y = \sin t\\ z = \dfrac{t}{2}\end{cases}$.

O comprimento dela de $t = 0$ a $t = 2\pi$ é

$C = \displaystyle\int_0^{2\pi} \sqrt{\sin^2 t + \cos^2 t + \dfrac{1}{4}}\ dt = \sqrt{5}\pi$.

sábado, 1 de junho de 2024

Seja $r \in \mathbb{R}$, demonstrar que $|r| = |-r|$.

Para $r = 0$ a igualdade é imediata.


Seja $r > 0$, $-r$ é negativo, logo $|-r| = -(-r) = r = |r|$.


Seja $r < 0$, $-r$ é positivo, logo $|-r| = -r = |r|$.


Quod Erat Demonstrandum.

quinta-feira, 30 de maio de 2024

Jogo de cartas: funções.

Muitas vezes desejamos apenas relaxar com uma atividade leve, não muito psiquicamente exigente. Pensando nisto criei um joguinho com cartas que nomeei de "funções". Explico.



Primeiramente criamos mentalmente uma função de duas variáveis; à primeira variável atribuímos valores de 1 a 13, de acordo com o número de uma carta retirada, 11 para o caso de valete, 12 para a dama e 13 para o rei; à segunda variável atribuímos os valores de 1 a 4, de acordo com o naipe, 1 se paus, 2 se ouros, 3 se copas e 4 se espadas.


De um deck embaralhado, vamos retirando uma a uma todas as cartas e calculando o valor da função para o par de variáveis.


Exemplo:


Se criarmos a função $f(x, y) = x + y$, $x$ o correspondente ao número e $y$ o correspondente ao naipe, e retirarmos uma dama de copas, a resposta correta à carta é $f(12, 3) = 12 + 3 = 15$.




sexta-feira, 24 de maio de 2024

MR Quiz - Estatísticas - Antonio Vandré Pedrosa Furtunato Gomes



Frequência horária de uso:



0%

00h
23h

100%




Frequência diária semanal:



0%

Segunda
Domingo

100%




Frequência mensal:



0%

Janeiro
Dezembro

100%


domingo, 19 de maio de 2024

Resolver a inequação $\dfrac{1}{x} > -1$.

Observemos inicialmente que qualquer $x$ positivo satisfaz.


Para $x < 0$ teremos:


$1 < -x\ \Rightarrow\ x < -1$


Logo $\fbox{$S = (-\infty, -1) \cup \mathbb{R}^*_+$}$.

Resolver a inequação $\dfrac{3x - 1}{2 - x} > -10$.

Olhando para o denominador do primeiro membro, devemos considerar as possibilidades do mesmo ser positivo ou negativo, assim:


$x < 2\ \Rightarrow\ 3x - 1 > -20 + 10x\ \Rightarrow\ x < \dfrac{19}{7}$


$x > 2\ \Rightarrow\ 3x - 1 < -20 + 10x\ \Rightarrow\ x > \dfrac{19}{7}$


Logo $\fbox{$S = (-\infty, 2)\ \cup\ \left(\dfrac{19}{7}, +\infty\right)$}$.