$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 29-09-2024.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

segunda-feira, 19 de setembro de 2022

Coordenadas angulares de Antonio Vandré.


 

No plano cartesiano, as coordenadas angulares de Antonio Vandré consistem no par ordenado $(\alpha, \beta)$, $\alpha$ o ângulo que a reta que contém $(0, 0)$ e $(x, y)$ faz com o eixo das absissas, e $\beta$ o ângulo que a reta que contém $(1, 0)$ e $(x, y)$ faz com o eixo das absissas, $(x, y) \neq (0, 0)$ e $(x, y) \neq (1, 0)$.

 

$\begin{cases}\alpha = \arccos \dfrac{x}{\sqrt{x^2 + y^2}}\\ \beta = \arccos \dfrac{x - 1}{\sqrt{(x - 1)^2 + y^2}}\end{cases},\ (x, y) \neq (0, 0)\ \wedge\ (x, y) \neq (1, 0)$.


$\begin{cases}x = \dfrac{(\cos \alpha)(\sin \beta)}{\sin(\beta - \alpha)}\\ y = \dfrac{(\sin \alpha)(\sin \beta)}{\sin(\beta - \alpha)}\end{cases},\ \alpha \neq \beta$.

Nenhum comentário:

Postar um comentário