No plano cartesiano, as coordenadas angulares de Antonio Vandré consistem no par ordenado $(\alpha, \beta)$, $\alpha$ o ângulo que a reta que contém $(0, 0)$ e $(x, y)$ faz com o eixo das absissas, e $\beta$ o ângulo que a reta que contém $(1, 0)$ e $(x, y)$ faz com o eixo das absissas, $(x, y) \neq (0, 0)$ e $(x, y) \neq (1, 0)$.
$\begin{cases}\alpha = \arccos \dfrac{x}{\sqrt{x^2 + y^2}}\\ \beta = \arccos \dfrac{x - 1}{\sqrt{(x - 1)^2 + y^2}}\end{cases},\ (x, y) \neq (0, 0)\ \wedge\ (x, y) \neq (1, 0)$.
$\begin{cases}x = \dfrac{(\cos \alpha)(\sin \beta)}{\sin(\beta - \alpha)}\\ y = \dfrac{(\sin \alpha)(\sin \beta)}{\sin(\beta - \alpha)}\end{cases},\ \alpha \neq \beta$.
Nenhum comentário:
Postar um comentário