$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 07-07-2023.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.
Mostrando postagens com marcador lógica. Mostrar todas as postagens
Mostrando postagens com marcador lógica. Mostrar todas as postagens

quarta-feira, 6 de outubro de 2021

Calculadora: próximo termo de uma sequência.

Entre com uma string separada por barra vertical "|" contendo, primeiro, um conjunto de números reais separados por ponto e vírgula ";", e, segundo, o inteiro positivo inteligência.

Exemplo:

Input: "2; 4; 6 | 1". Output: aproximadamente "8".


(pode travar o sistema)


Próximo termo cogitado:





terça-feira, 18 de fevereiro de 2020

Demonstração: $p \wedge (\bigvee_{i=1}^n q_i)\ \Leftrightarrow\ \bigvee_{i=1}^n (p \wedge q_i)$.

Vamos utilizar o método da indução finita.

Para $n = 1$, de imediato $p \wedge q_1\ \Leftrightarrow\ p \wedge q_1$.

Para $n = 2$, $p \wedge (q_1 \vee q_2)\ \Leftrightarrow\ (p \wedge q_1) \vee (p \wedge q_2)$.

Supondo a sentença verdadeira para $n$, vamos mostrar que vale para $n + 1$.

$p \wedge (\bigvee_{i=1}^n q_i)\ \Leftrightarrow\ \bigvee_{i=1}^n (p \wedge q_i)$

$p \wedge [(\bigvee_{i=1}^n q_i) \vee q_{n+1}]\ \Leftrightarrow\ [p \wedge (\bigvee_{i=1}^n q_i)] \vee (p \wedge q_{n+1})\ \Leftrightarrow$

$\Leftrightarrow\ [\bigvee_{i=1}^n (p \wedge q_i)] \vee (p \wedge q_{n+1})\ \Leftrightarrow\ \bigvee_{i=1}^{n+1} (p \wedge q_i)$

quinta-feira, 13 de dezembro de 2012

A contra-positiva de uma implicação.

Consideremos uma proposição da forma "se $p $ então $q $", simbolizada por $p\ \rightarrow\ q $. Uma outra forma de dizer a mesma coisa seria "Se não $q $ então não $p $", simbolizada por $\sim q\ \rightarrow\ \sim p $. Provemos:

Construamos a tabela-verdade para cada uma das possivilidades entre as veracidades de $p $ e $q $.

$p $$q $$p\ \rightarrow\ q $$\sim q\ \rightarrow\ \sim p $
VVVV
VFFF
FVVV
FFVV


Observemos que as colunas $p\ \rightarrow\ p $ e $\sim q\ \rightarrow\ \sim p $ são idênticas, logo as duas proposições compostas são equivalentes, ou seja, para afirmar uma mesma sentença, tanto faz usar uma ou outra.

Tomemos um exemplo :

Uma função é injetora se, dados dois elementos distintos do domínio, suas imagens também serão distintas. Simbolicamente :

$x_1\ \neq\ x_2\ \Rightarrow\ f(x_1)\ \neq\ f(x_2) $

O que seria equivalente a dizer:

Uma função é injetora se, se duas imagens são iguais, seus respectivos correspondentes também são iguais. Simbolicamente :

$f(x_1)\ =\ f(x_2)\ \Rightarrow\ x_1\ =\ x_2 $

terça-feira, 11 de dezembro de 2012

Por que usar redução ao absurdo?

Todos os teoremas matemáticos são conclusões de hipóteses. Ou seja, são afirmações ou proposições da forma Se $p$ então $q$, simbolicamente representado por $(p\ \rightarrow\ q)$.

$(p\ \rightarrow\ q)$ também é uma proposição que pode ser verdadeira ou falsa, de acordo com combinações entre a premissa e a conclusão:

Se $p$ é verdadeira e $q$ é verdadeira, $(p\ \rightarrow\ q)$ é verdadeira.

Se $p$ é verdadeira e $q$ é falsa, $(p\ \rightarrow\ q)$ é falsa.

Se $p$ é falsa e $q$ é verdadeira, $(p\ \rightarrow\ q)$ é verdadeira......[1]

Se $p$ é falsa e $q$ é falsa, $(p\ \rightarrow\ q)$ é verdadeira......[2]

Assim, se desejamos conhecer o valor-verdade ou autenticidade de uma proposição $p$, o caminho ideal não é concluir de $p$ uma proposição verdadeira $q$, visto que, de acordo com [1], $q$ pode ser verdadeira e $p$ pode ser falsa.

Logo, a melhor maneira de conhecer se uma afirmação é autêntica, basta tomar sua negação, e dela concluir uma outra proposição que seja falsa, assim, de acordo com [2], a premissa será falsa, e sua negação será verdadeira.