$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 07-07-2023.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.
Mostrando postagens com marcador gravitação universal. Mostrar todas as postagens
Mostrando postagens com marcador gravitação universal. Mostrar todas as postagens

quarta-feira, 30 de junho de 2021

Exercício: satélites estacionários; função corda.

Sejam dois satélites estacionários, um à longitude $80^o$ e outro à longitude $30^o$. Sabendo que satélites estacionários estão a aproximadamente $42000\ km$ do centro da Terra, qual a distância entre eles?

Resolução:


$cord\ \dfrac{5\pi}{18} = \sqrt{2(1 - \cos \dfrac{5\pi}{18})} \approx 0,85$

Logo distanciam-se de, aproximadamente, $42000 \cdot 0,85 \approx \fbox{$36000\ km$}$.


domingo, 8 de julho de 2012

A terceira lei de Kepler.



Enunciado:

Os quadrados dos períodos de revolução dos planetas são proporcionais aos cubos dos raios de suas órbitas.

De fato:

Considerando as órbitas trajetórias circulares, a força resultante sobre o astro será centrípeta. E usando a gravitação de Newton, teremos:

$\dfrac{mv^2}{R}\ =\ G\dfrac{mM}{R^2}$

Onde $m$ é a massa do planeta, $M$ é a massa do Sol, $R$ é a distância que separa os astros, $v$ é a velocidade do planeta, e $G$ é a constante gravitacional universal.

Dela concluímos:

$\dfrac{v^2}{R}\ =\ G\dfrac{M}{R^2}$

$v\ =\ \sqrt{\dfrac{GM}{R}}$

Como o comprimento da trajetória é $2\pi R$, e chamando de $T$ o período de translação, teremos:

$T\ =\ \dfrac{2\pi R}{v}\ =\ \dfrac{2\pi R}{\sqrt{\dfrac{GM}{R}}}\ =\ \sqrt{\dfrac{4 \pi^2 R^3}{GM}}$

Donde $T^2\ =\ \dfrac{4 \pi^2 R^3}{GM}$.

Notemos que $\dfrac{4 \pi^2}{GM}$ é constante. Logo:

$T^2\ \propto\ R^3$

Vale destacar mais um fato:

Segundo as observações de Tycho Brahe, tomando $T$ em anos e $R$ em unidades astronômicas, a constante de proporcionalidade é $1$. Logo:

$\dfrac{4 \pi^2}{GM}\ =\ 1 \Rightarrow\ GM\ =\ 4 \pi^2$

Ou seja, se Newton, ao enunciar a lei da gravitação universal, se conhecesse a massa do Sol, poderia determinar a constante $G$ 100 anos antes de Cavendish.

quarta-feira, 4 de julho de 2012

Exercício: objetos flutuando no equador.

Esta questão não requer meditações profundas, mas é um tanto cômica.

Imagine que a velocidade de rotação da Terra fosse aumentando gradualmente. Para um determinado valor dessa velocidade, os corpos situados na superfície da Terra, na linha do Equador, estariam flutuando, sem exercer compressão sobre o solo (os pesos aparentes desses corpos seriam nulos) Sendo o raio da Terra $R\ =\ 6400\ km$ e considerando $g\ =\ 10\ \dfrac{m}{s^2}$, calcule qual seria o período de rotação da Terra quando isso acontecesse.

Resolução:



Se por exemplo uma pessoa for o objeto estudado, ela estará acompanhando a rotação da terra e terá resultante centrípeta. Tendo apenas duas forças consideradas:

$\overrightarrow{F_R}\ =\ \overrightarrow{P}\ +\ \overrightarrow{N}$

$F_R\ =\ P\ -\ N$

Mas se o peso aparente é nulo, teremos $\overrightarrow{N}\ = \overrightarrow{0}$.

Sendo $\omega$ a velocidade angular da Terra, teremos:

$m\ \cdot\ \omega^2\ \cdot R\ =\ m\ \cdot\ g$

Donde:

$\omega\ =\ \sqrt{\dfrac{g}{R}}$

Como $\omega\ =\ \dfrac{2\pi}{T}$, sendo $T$ o período, teremos:

$T\ =\ \dfrac{2\pi}{\sqrt{\dfrac{g}{R}}}$

Aplicando os valores, teremos $T\ \approx\ 1h\ 24'$. O dia teria aproximadamente apenas uma hora e meia.

quarta-feira, 13 de junho de 2012

O ganho de massa de um satélite e o efeito orbital.

Imaginemos um astro que orbita outro. Mesmo que irrisório, o ganho de massa existe pela acumulação de poeira cósmica.

Seria interessante percebermos o efeito deste ganho no movimento do astro-satélite.

Supondo que sua velocidade linar não varie e que sua tragetória seja circular, temos:

$F_g\ =\ G \dfrac{Mm}{R^2}\ =\ F_c\ =\ (m+\Delta m) \dfrac{v^2}{R}$

$G \dfrac{Mm}{R^2}\ =\ m \dfrac{v^2}{R}\ +\ \Delta m \dfrac{v^2}{R}$

$G \dfrac{Mm}{R}\ =\ m\ \cdot\ v^2\ +\ \Delta m \cdot\ v^2$

$R\ =\ \dfrac{GMm}{v^2 (m\ +\ \Delta m)}$

Observando o gráfico de uma função análoga $f(x)\ =\ \dfrac{1}{1+x}$, temos:



Uma hipérbole transladada.

Observamos que à medida que o incremento de massa aumenta, o raio orbital diminui.