$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 07-07-2023.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

terça-feira, 4 de junho de 2013

Exercício: período de oscilação de um pêndulo na Lua.

Na Terra, um pêndulo simples executa oscilações com período $T_T$. Se este pêndulo oscilasse na Lua, seu período seria $T_L$. Determine a razão $\dfrac{T_T}{T_L}$. Sabe-se que a aceleração da gravidade na Lua é seis vezes menor que na Terra.

Resolução:

Para pequenas oscilações, o movimento do pêndulo será aproximadamente harmônico simples linear, o que possibilitará-nos utilizar a fórmula $T = 2\pi\sqrt{\dfrac{\ell}{g}}$.

Como a aceleração da gravidade na Lua é seis vezes menor que na Terra, teremos: $g_L = \dfrac{g_T}{6}$.

Assim:

$T_L\ =\ 2\pi\sqrt{\dfrac{\ell}{\dfrac{g_T}{6}}}\ \Rightarrow\ T_L\ =\ (\sqrt{6})\ \cdot\ (2\pi\sqrt{\dfrac{\ell}{g_T}})\ =\ \sqrt{6}\ \cdot\ T_T$

Donde:

$\dfrac{T_T}{T_L}\ =\ \dfrac{T_T}{\sqrt{6}\ \cdot\ T_T}\ =\ \dfrac{1}{\sqrt{6}}$

Nenhum comentário:

Postar um comentário