$\require{enclose}$ $\newcommand{\avsum}{\mathrel{\displaystyle\int \!\!\!\!\!\! \Delta\ }}$ $\newcommand{\bcancelto}[2]{{\enclose{southeastarrow}{#2}\,}_{\lower.75ex{#1}}}$ $\newcommand{\ordcirc}[1]{\mathrel{[\hspace{-4pt} \circ \hspace{2pt}#1 \hspace{3pt}]\hspace{-4pt}\circ}}$ $\newcommand{\avigual}{\{=\}}$ $\newcommand{\intsup}{{\LARGE \big\uparrow}\displaystyle\int}$ $\newcommand{\intinf}{{\LARGE \big\downarrow}\displaystyle\int}$
Última atualização estrutural do weblog: 07-07-2023.

Este weblog utiliza serviços de terceiros, e os mesmos podem não funcionar adequadamente, o que não depende de mim.

Se as expressões matemáticas não estiverem satisfatoriamente visíveis, você pode alterar as configurações de exibição no menu contextual.

Este weblog pode passar por melhorias. Caso não teve uma boa experiência hoje, futuramente os problemas poderão estar corrigidos.

Em caso de não ser a mim mais possível realizar manutenções, como, por exemplo, devido a falecimento ou desaparecimento, alguns links podem ficar quebrados e eu não responder mais a comentários. Peço compreensão.

sexta-feira, 14 de dezembro de 2012

Exercício: áreas na função logaritmica.

(Vunesp-SP) A curva da figura representa o gráfico da função $y\ =\ \log_a x$ com $a\ >\ 1$. Dos pontos $B\ =\ (2\ ,\ 0)$ e $C\ =\ (4\ ,\ 0)$ saem perpendiculares ao eixo das abscissas, as quais interceptam a curva em $D$ e $E$, respectivamente. Se a área do trapézio retangular $BCED$ vale $3$, provar que a área do triângulo $ABD$, onde $A\ =\ (1\ ,\ 0)$, vale $\dfrac{1}{2}$.



Resolução:

Primeiramente calculemos as ordenadas de $D$ e $E$:

$D\ =\ (2\ ,\ \log_a 2)$

$E\ =\ (4\ ,\ \log_a 4)$

Calculemos a área $S_1$ do trapézio:

$S_1\ =\ \dfrac{(\log_a 2 + \log_a 2^2)\ \cdot\ (4 - 2)}{2}\ =\ 3\log_a 2$

Como $S_1\ =\ 3$, temos:

$\log_a 2\ =\ 1\ \Rightarrow\ a\ =\ 2$

Então $D\ =\ (2\ ,\ 1)$

Logo a área $S_2$ do triângulo será :

$S_2\ =\ \dfrac{(2 - 1)\ \cdot\ 1}{2}\ =\ \dfrac{1}{2}$.

Nenhum comentário:

Postar um comentário